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ABSTRACT
Motivation: Despite theoretical arguments that so-called ‘loop
designs’ for two-channel DNA microarray experiments are
more efficient, biologists continue to use ‘reference designs’.
We describe two sets of microarray experiments with RNA from
two different biological systems (TPA-stimulated mammalian
cells and Streptomyces coelicolor ). In each case, both a
loop and a reference design were used with the same
RNA preparations with the aim of studying their relative
efficiency.
Results: The results of these experiments show that (1) the
loop design attains a much higher precision than the refer-
ence design, (2) multiplicative spot effects are a large source
of variability, and if they are not accounted for in the mathem-
atical model, for example, by taking log-ratios or including spot
effects, then the model will perform poorly. The first result is
reinforced by a simulation study. Practical recommendations
are given on how simple loop designs can be extended to more
realistic experimental designs and how standard statistical
methods allow the experimentalist to use and interpret the
results from loop designs in practice.
Availability: The data and R code are available at http://exgen.
ma.umist.ac.uk
Contact: veronica.vinciotti@brunel.ac.uk

1 INTRODUCTION
A common aim of many microarray studies is to detect the
genes in a biological system that are differentially expressed
across a number of conditions of interest. In a typical
two-channel DNA microarray experiment, mRNAs from
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biological samples under two different conditions are labelled
with a green (Cy3) and a red (Cy5) dye, respectively, and
then hybridized onto an array of complementary probes. After
hybridization, a measure of red and green intensities for each
spot provides an indication of the amount of mRNAs pro-
duced by the corresponding gene under the two conditions. A
higher intensity for one condition over the other for one spot
indicates that the corresponding gene was particularly active
under that condition.

As DNA microarray experiments are becoming larger,
involving larger number of samples and conditions, it is
important to design experiments in the most efficient way in
order to obtain precise estimates of the biologically important
parameters. Wit and McClure (2004) provide a comprehens-
ive overview of the various issues that need to be addressed
when designing microarray experiments. The objective is to
design the experiment in such a way as to minimize the effect
of unwanted variation, while increasing the precision of the
estimates of the parameters of interest, the changes in gene
expression from one condition to another.

In this paper, we focus mainly on the problem of how
to assign samples efficiently to microarrays, given a num-
ber of conditions we wish to compare and a fixed number
of available arrays. The most commonly used design within
the biological community is the so-called reference design.
In this design, each condition of interest is compared with
samples taken from some standard reference. As the ref-
erence is common to all the arrays, this design allows
an indirect comparison between the conditions of interest.
The main criticism raised to this approach is that 50% of
the hybridization resources are used to produce a control
or common reference signal of no intrinsic interest to the
biologists. This reference signal is in effect processed out
of the final analysis following normalization. In contrast,
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a loop design compares two conditions via a chain of
other conditions, thereby removing the need for a reference
sample.

The aim of this study is to compare empirically these two
commonly used two-channel microarray designs, the loop and
the reference design. Most theoretical papers on microarray
design argue that the loop design of microarray experiments
is more efficient than the reference design (Landgrebeet al.,
2004; Churchill, 2002; Glonek and Solomon, 2004; Kerr and
Churchill, 2001; Khanin and Wit, 2004; Yang and Speed,
2002). Despite these theoretical advantages and some occa-
sional examples of loop-type designs in practice (Townsend
and Hartl, 2002; Townsendet al., 2003), there is a tendency to
continue using the reference design, as evidenced by recently
included studies in the Stanford microarray database (Chang
et al., 2004; Lapointeet al., 2004; Pathanet al., 2004). A
second aim of the paper is to show how elementary matrix
algebra can make such loop designs more accessible to bio-
logists. These technical details as well as a numerical example
are described in Section 3.

In the present study, two sets of microarray experiments
were conducted. Two entirely different biological systems
(one eukaryotic and one prokaryotic) were examined, both
comprising three sampling points in a time-series experiment:
(1) The human B-cell lymphoma cell line Ramos, where
ester tetradecanoyl phorbol acetate (TPA) was used to stimu-
late protein kinase C activity and (2) the mycelial growth of
Streptomyces coelicolor bacterium cultivated on agar plates.
Throughout the paper, we refer to these studies as the
B-cell andStreptomyces studies, respectively. In each study,
both a loop and a reference design were performed using the
same RNA preparations to allow direct comparison of the
output of the two experimental designs. This is the first time
the two types of designs have been evaluated side-by-side
experimentally. Both experiments are described in more detail
in Section 2.

In Section 4, the results of the two designs for each of
the studies are presented in two ways. That is, by com-
paring the standard errors of the parameter estimates for
both studies as well as by plotting the fraction of differ-
entially expressed genes for different cut-offs. This latter
method is related to the theoretical receiver operating char-
acteristic (ROC) curve, which for completeness is described
in the same section by means of a simulation study. In
Section 5, we discuss several issues that are closely related
to the comparison of loop versus reference designs. First,
we discuss the impact of considering only the individual
channel data and not the log-ratios. Second, as the two
studies involve only special cases of loop and reference
designs, some hints are given on how these designs can be
extended to situations with a larger number of conditions.
Finally, we consider the practical issue of array failures
and question the supposed robustness of reference designs
towards these.

2 MICROARRAY EXPERIMENTS
On a two-channel microarray, it is possible to compare dir-
ectly two conditions. The need for a more complicated design
arrangement becomes necessary when there are at least three
conditions, as it is impossible to compare all conditions on the
same array. In this case, one can compare the efficiency of a
loop design versus a reference design.

In this section, we describe the two experiments that we
conducted to compare the two designs. Each of them con-
siders three time-points in the development of two very
different organisms, a human B-cell lymphoma cell line and
a S.coelicolor bacterium.

2.1 Streptomyces coelicor
Streptomyces coelicolor is a complex Gram-positive
bacterium which undergoes developmental changes, produ-
cing spore chains from branching mycelium and secondary
metabolites such as antibiotics in the late stages of its devel-
opment. The three RNA samples in this study are taken from
a wild-type strain grown on cellophane-coated agar plates
and harvested at time-points representing early, mid and late
stages of the development.

Figure 1 summarizes theStreptomyces microarray experi-
ment. Each hybridization pair was carried out in triplicate,
with the dyes swapped on one of the array plates. The experi-
ments associated with the two designs used the same number
of slides to allow for a fair comparison. Genomic DNA
(gDNA) from S.coelicolor was used as the reference sample
in the reference design. The microarray batch used (SCp14)
contained 7337 probes, representing 7337S.coelicolor genes.
To facilitate direct comparison of the loop and reference
designs, the same labelled preparations of cDNA were divided
equally between the loop and reference arrays. Details of
the microarrays used and the protocols for RNA isolation,
cDNA labelling and microarray hybridization are given at
http://www.surrey.ac.uk/SBMS/Fgenomics/Microarrays.

2.2 Human B-cell lymphoma cell line
The B-cell lymphoma line Ramos was induced with TPA, a
chemical that stimulates the activity of the protein kinase C.
This protein is an upstream mediator of the herpesvirus-8-
induced ERK signalling pathway. Samples were taken at 0, 2
and 4 h after the induction.

In the B-cell study six microarrays are available for both
the loop and reference design experiments. As a result, a
similar design to the one in theStreptomyces study repre-
sented in Figure 1 is used, except that arraysa1, a4 and
a7 are omitted. Each hybridization pair was carried out as
a duplicate dye-swap. Total RNA was extracted at each of
the three time-points and hybridized to Human Gen2 cDNA
microarrays (http://www.hgmp.mrc.ac.uk). The microarray
contains approximately 5400 probes corresponding to 3360
known human clones, 768 from the Mammalian Gene
Collection and several others. For the reference design,
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Fig. 1. Reference and loop designs used on theStreptomyces study. A line, indicated byai , represents a direct hybridization between the two
samples on arrayi. The arrow goes from the Cy3 to the Cy5 channel.
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Fig. 2. Effect of across-array normalization in the B-cell reference design study across the 12 channels of its 6 arrays.

a common reference total RNA pool from several cell lines
was used.

3 METHODS
3.1 Data normalization
Prior to the analysis of the data, normalization procedures
were performed to remove artefacts from the data that are
due to non-specific effects. The method used is described
in detail in Wit and McClure (2004) and is available in the
R-librarysmida. Essentially, we correct for various artefacts,
such as spatial, background, dye and across-array effects. The
normalization procedures are applied in a sequential man-
ner, starting with local corrections and proceeding towards
more global corrections like across-array normalization.

Figure 2 shows the effects of across-array normalization in
the B-cell study.

3.2 Parameter estimation
We assume that the amount of transcribed RNA is approxim-
ately proportional to its spot intensity, whereby the constant
of proportionality may depend on the particular spot itself. By
defining gene expression as the normalized log-intensity of a
spot associated with a particular gene, the difference between
the gene expressions of the two conditions in one spot is equal
to the log-difference of the transcribed mRNA as the constant
of proportionality cancels out. In microarray experiments, the
parameters of interest are the changes in gene expression from
one condition to another.
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Here, we present a general methodology to process gene
expression data that utilizes all the available information to
produce estimates of the parameters of interest. Such a method
is indispensable when a loop design is used, since log-ratios
on each slide are not directly comparable, as they can be log-
ratios of many combinations of conditions. In the reference
design, two time-points can be compared via their associated
log-ratios.

For each gene, we denote its true expression value at condi-
tion t by θt . For simplicity, we avoid referring to the specific
gene in the notation. An observationyjk is the log-ratio of
conditionj and conditionk, that is log(zj /zk), wherezt is the
observed intensity at conditiont . For a loop design, these con-
ditions are time-points, whereas for a reference design one of
the two conditions is the reference. Wit and McClure (2004)
argue that under a wide range of circumstances the variable
yjk is normally distributed

yjk ∼ N (µjk,σ 2), µjk = θj − θk. (1)

Here,µjk is the true expression difference between conditions
j and k. One central assumption is that the variance does
not depend on the conditions involved, although we allow
for the real possibility that the expression variance is gene-
dependent or even design dependent. For each gene a vector
of n observationsy = (ya1, . . . ,yan

), obtained on then arrays
a1, . . . ,an, can be represented as

y = Xµ + ε, (2)

whereX is thedesign matrix defining the relationship between
the values observed in the experiment and a set of independ-
ent parameters,µ andε is a vector of independent, normally
distributed, zero-mean errors. For an experiment withT

conditions, we arbitrarily choose the parametrizationµ:

µ = (µ12,µ13, . . . ,µ1T ).

Any of the other contrasts can be obtained by the relation
µij = µ1j − µ1i .

The goal is to obtain estimates of the true expression differ-
ences,µ̂jk, separately for each gene. Given the assumptions
behind the linear model, the maximum likelihood estimates
for the differencesµ are

µ̂ = (XtX)−1Xty. (3)

From these, any other contrast can be estimated byµ̂ij =
µ̂1j − µ̂1i .

For the three time-point experiments considered in this
paper, the parameters of interest are the differencesµ12, µ13

andµ23. We will go through a simple example to show how
these parameters are estimated by Equation (3) when using a
reference and a loop design. Table 1 gives the log-ratios for
a particular gene for the two designs from theStreptomyces

Table 1. Log-ratios for gene SC02348 across the nine arrays of the reference
and loop designs from theStreptomyces study

Reference Loop
Cy3 Cy5 yai

Cy3 Cy5 yai

T1 R −0.510 T1 T2 −0.005
T1 R −0.370 T1 T2 −0.236
R T1 0.633 T2 T1 −0.038
T2 R −0.424 T2 T3 0.047
T2 R −0.250 T2 T3 0.269
R T2 0.468 T3 T2 −0.031
T3 R −0.374 T3 T1 −0.139
T3 R −0.774 T3 T1 −0.283
R T3 0.667 T1 T3 0.082

study. The design matrix of the loop design for this problem
is given by

XL =
(

1 1 −1 −1 −1 1 0 0 0
0 0 0 1 1 −1 −1 −1 1

)t

(4)

and the estimates for the expression ratios by(
µ̂

(L)
12

µ̂
(L)
13

)
= (

Xt
LXL

)−1
Xt

Ly =
(−0.028

0.128

)
.

From these,µ̂(L)
23 = µ̂

(L)
13 − µ̂

(L)
12 = 0.156. Similarly, the

design matrix of the reference design is given by

XR =

0 0 0 −1 −1 1 0 0 0

0 0 0 0 0 0 −1 −1 1
1 1 −1 1 1 −1 1 1 −1




t

(5)
and the estimates for the expression ratios by


µ̂

(R)
12

µ̂
(R)
13

µ̂
(R)
1r


 = (

Xt
RXR

)−1
Xt

Ry =

−0.124

0.101
−0.504


 ,

from whichµ̂
(R)
23 = 0.225.

4 RESULTS
4.1 Variability of estimates
The two models described above yield different estimates of
the gene expression parameters. If, as under our assumptions,
both sets of estimates are unbiased, then the best model is
the one that produces the most precise estimates, that is, the
estimates with the lowest variability. Given the assumptions
behind the linear model in Equation (2), it follows that the
contrast estimates for the designD are given as

µ̂(D) ∼ N
(
µ,

(
Xt

DXD

)−1
σ 2

D

)
,

whereXD is the design matrix for the designD. In the case
of theStreptomyces study, the design matrix for the reference
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Fig. 3. Estimated standard errors
√

V̂ (µ̂12) of the differential expression estimates of the first versus the second time-point for the two designs
across the two biological systems.

design is given by Equation (5) and the one for the loop design
by Equation (4). For the B-cell study, these matrices can be
easily adapted by removing the first, fourth and seventh rows.
In our formulation, the differential expression varianceσ 2 is
allowed to depend on the design. In theoretical comparisons,
it is typically assumed equal across loop and reference design.
This might unfairly favour loop designs, in the case where it
is possible to use a very stable reference sample.

Let V̂
(
µ̂

(D)
jk

)
denote the estimated variance of the estim-

ate µ̂
(D)
jk , obtained from the estimated covariance matrix(

Xt
DXD

)−1
s2
D. Figure 3 shows a box plot of the standard

errors,
√

V̂ (µ̂12), for the two designs of the two biological sys-
tems. It is clear from this figure that the parameter estimates
obtained using the reference design have higher variability
than when the loop design is used. The results for the other
contrasts are similar.

The variances of the parameter estimates for all contrasts
can be combined into an empirical measure of relative design
efficiency. This is defined by√√√√√

∑
genes

∑
contrasts

V̂
(
µ̂

(L)
jk

)
∑

genes

∑
contrasts

V̂
(
µ̂

(R)
jk

) . (6)

This measure is in spirit similar to the so called A-optimality
score, which is the sum of the variances of the parameter
estimates up to a constantσ 2, which is assumed to be the
same for different designs (Kerret al., 2000). The theoretical

Table 2. Square root of the average estimated variance of the contrast
estimates for the two designs across the two biological systems and a
comparison of the empirical and theoretical relative design efficiencies

B-cell Streptomyces

Reference 0.572 0.279
Loop 0.274 0.091
Emp. rel. efficiency 0.479 0.326
Th. rel. efficiency 0.577 0.577

relative design efficiency is defined as√√√√√ tr
(
CL

(
Xt

LXL

)−1
CL

t
)

tr
(
CR

(
XR

tXR

)−1
CR

t
) ,

where XR and XL are the design matrices for the refer-
ence and the loop design, respectively, andCR and CL

are the matrices that transform the two designs to the
same parametrization. For our experiments, these are the
matrices satisfying(µ12,µ13,µ23)

t = CR(µ12,µ13,µ1r )
t

and(µ12,µ13,µ23)
t = CL(µ12,µ13)

t, respectively.
Table 2 reports the average standard error for the two designs

and the empirical and theoretical design efficiencies for the
two studies. It is intriguing that in both cases the empirical
measure of relative efficiency is smaller than the theoret-
ical measure. This means that the loop design in these two
examples performs even better than expected theoretically.
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Fig. 4. Percentage of significant genes found by the two designs (solid and dotted lines) and percentage of significant genes found by both
designs as a fraction of those found in the reference design (dashed line) in the B-cell andStreptomyces studies.

Apparently, the reference samples in both biological systems
were less stable than any of the ordinary conditions.

4.2 Differentially expressed genes
For a further comparison of the two experimental designs,
we have analyzed the genes for differential expression across
time using the two methods described above. We use anF -test
to find the genes for whichµ = (µ12,µ13) is significantly
different from zero under either the loop or reference design.
Under the assumption of normality, it follows that

µ̂tC(XtX)Ct µ̂

s2(p − 1)
∼ Fp−1,df (7)

whereC is the matrix that transforms the design to theµ para-
metrization,s is the estimate of the standard error in the model,
p is the number of conditions of interest in the design anddf

is the number of independent observations in the design minus
the number of parameters that the design attempts to estimate.
In our experiments, for both the reference and loop design it
holds thatp = 3, for the reference designdf = n − p and
for the loop designdf = n − p + 1, wheren is the number
of arrays.

Figure 4 summarizes the results obtained on the B-cell and
Streptomyces studies. The plots show the percentage of sig-
nificant genes found by the two methods for critical levels
between 0 and 1. In theStreptomyces study, the plot shows
that, for the same critical level, the percentage of genes
found when using the loop design is higher than when the
reference design is used. The dashed line on the same plot

strengthens this result by showing a high percentage of the
same genes found significantly expressed by both the loop
and the reference designs in this study. These results show
the advantages of using a loop design as compared with a
reference design.

Interestingly, it seems that at no cut-off in the B-cell study
more genes are detected than would be expected if none of the
genes were differentially expressed. And consequently, there
is a more or less random relationship between the number of
genes detected by the reference and the loop designs. We con-
clude that in the B-cell study there are very few differentially
expressed genes.

4.3 Simulation study
The comparative analysis conducted so far on the basis of
the two pilot studies shows that the loop design is more effi-
cient than the reference design. In this section, we complete
the comparison of the two designs by conducting a simul-
ation study.

We have simulated gene expressions for 3 conditions over 6
arrays and 100 genes, using a loop and a reference model. We
have generated the data so that 30 genes were differentially
expressed, with a mean expression different from zero drawn
from aN (0, 1) distribution. Furthermore, the simulation was
repeated 100 times. As before, we used anF -test to detect the
differentially expressed genes.

Figure 5 plots the true positive rate (proportion of active
genes detected as active) versus the false positive rate (propor-
tion of inactive genes falsely detected as active) as the critical
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Fig. 5. ROC curve for the simulation study: 100 genes, of which 30
are differentially expressed, across 3 conditions using 6 arrays for
each design.

level increases from 0 to 1. The ROC curves show that the loop
design detects the differentially expressed genes more accur-
ately than the reference design. For any critical value, the loop
design attains a higher true positive rate and a lower false pos-
itive rate than the reference design. This means that the loop
design detects a higher proportion of differentially expressed
genes while minimizing the proportion of mistakenly detected
non-differentially expressed genes. That is, by designing the
experiments in a more efficient way, one can obtain more
precise answers to the biological questions of interest.

5 DISCUSSION
The results in this paper demonstrate that given the same
number of microarrays the loop design provides more precise
estimates of the parameters of interest than the reference
design. The reason behind this is that in the loop design
more resources are used for the measurement of the conditions
of interest.

5.1 Alternative: using raw channel data
The estimation of the parameters from a loop design presented
in this paper was based on the expression differencesyjk. This
is a common starting point in microarray analysis, based on the
belief that the spot intensities are only proportional to the RNA
abundance. So by taking the ratios between the two channel
intensities, one obtains the ratio of the RNA abundances, as
the proportionality constant including a possible spot effect
cancels outs.

A downside of this method is that by taking the ratio of the
two channels one loses information about the gene expression
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Fig. 6. Percentage of significant genes found when using the total
expressions (dotted line) rather than the expression differences (solid
line) in theStreptomyces study.

variance if there are no significant spot effects. In this section,
we consider the effects of working with the gene expressions,
rather than the expression ratios. It implies estimating total
expressionsθ , rather than the expression differencesµ.

For the loop design in Figure 1, ignoring explicitly possible
spot effects results in the modelling equation




x1a1

x2a1

...
x3a9

x1a9


 =




1 0 0
0 1 0
1 0 0
0 1 0
0 1 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 1
0 1 0
0 0 1
1 0 0
0 0 1
1 0 0
1 0 0
0 0 1





θ1

θ2

θ3


 +




ε1

ε2
...

ε18


 , (8)

wherextai
denotes the total expression at timet measured on

arrayai . From the estimateŝθt , one can obtain estimates of
the differential expression parameters, viaµ̂jk = θ̂j − θ̂k.

The method described in Section 4.1 with the design matrix
as in Equation (8) leads to an average estimated standard
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Fig. 7. Multidimensional scaling plots of the 12 and 18 channels of the B-cell andStreptomyces loop design study, respectively. An arrow
refers to an array, with the arrowhead pointing to the condition (time 1, 2 or 3) in the Cy5 channel.

error of 0.481 for the herpesvirus study and of 0.158 for the
Streptomyces study. Compared with the results in Table 2,
this shows that treating each channel individually leads to a
higher variance than when the log-ratios of the two channels
are considered. Figure 6 strengthens this result. Here we used
the F-test in Equation (7), withp = 3 anddf = 2n − p, to
detect the differentially expressed genes. The plot shows how,
working with expressions rather than expression ratios, leads
to an even worse performance than randomly labelling genes
as differentially expressed.

These results suggest that the independent assumptions of
the two channels are violated. It is most likely that in these
microarrays the physical properties of the spots for the same
gene vary from array to array. Such spot bias has the res-
ult of making different conditions applied to the same spot
look more alike than the same conditions across different
spots. It is important to note that the presence of spot bias
makes the calculation of the standard errors completely moot,
which results in a poor performance in detecting differentially
expressed genes.

Multidimensional scaling plots, like the Sammon plots in
Figure 7 (Sammon, 1969), can be used to check for the pres-
ence of spot effects. If the channels are truly independent,
they should cluster according to conditions, whereas if there
is some residual correlation of pairs of channels then they
will cluster by array. In the two studies that we considered,
the gene expressions across the two conditions on the same
array tend to be more similar to each other than to the gene
expressions for the same condition on different arrays, even
after the data have been normalized.

5.2 Extension to large studies
A natural question arising from the study is how to extend
the loop design for larger experiments. Assuming that all the
conditions are equally important, designing an experiment
that would directly compare all possible pairs of conditions
would obviously require too many arrays. A more realistic
design is needed.

Wit et al. (2004) have developed an optimization algorithm
that efficiently searches for the loop design which minim-
izes the A-optimality criterion. The search is restricted to
the family of interwoven designs. These designs guarantee
that each condition is measured equally often by either dye.
The optimization algorithm allows one to input the number
of conditions one wants to compare and the number of arrays
one can afford to hybridize. For example, Figure 8 shows the
best interwoven loop design for the case of 30 conditions and
90 arrays.

Despite the high number of conditions involved in large
experiments, getting estimates for the parameters of interest
is no more difficult than for the smaller pilot studies investig-
ated in this paper. The main point is to define the design matrix
X of the study, which, as part of the simple linear model
in Equation (2), describes the assumption that a measured
value of gene expression is equal to its true value plus some
normal random error. The estimatesµ̂ returned by the max-
imum likelihood estimation in Equation (3) can be used to
draw statistical conclusions on which genes have changed
their expression across conditions. The better the statistical
design, the more precise and reliable the biological answers
will be.
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Fig. 8. A-optimal design for an experiment with 30 time-points and
90 arrays in the class of interwoven loop designs.

5.3 Practical issue: the array that did not work
An issue often raised by biologists is how a loop design would
cope with the common situation when one array gets missed
or damaged. The relative symmetry and simplicity of a ref-
erence design seems to become more attractive in this kind
of scenario. In our experience, this argument in favour of the
reference design often does not hold. For example, compare
the very simplen-array loop design (one array for each con-
trast) to then-array reference design. If one array fails in
either design, then in the loop design all the contrasts are still
estimable, whereas in the reference design all the contrasts
that involve the condition in the failed array are not estimable
anymore.

Multiple interwoven loops will make a loop design even
more robust. For example, each condition in the design
described in Figure 8 is measured six times. Random fail-
ure of even 20% (18 slides) of all slides is still unlikely to
result in any contrast becoming unidentifiable. In contrast, in
a reference design each condition is measured by only three
slides and therefore this probability is much higher. Future
work will look at precise mathematical formulations of this
issue to obtain more general conclusions on the robustness of
loop designs.

It is true that array failure will typically lead to imbalance in
the design, but this is true for both loop and reference designs.
Despite this imbalance, least squares estimates of the contrasts
are still available, by eliminating those rows from the design
matrixX that correspond to the missing arrays and then using
Equation (3).

Although we do not recommend using a reference design,
we do not advise against using a reference in the design. In
fact, since all the parameters in the model are relative expres-
sions, there are advantages in comparing all the conditions
of interest to one stable condition: the parametersµjk will
be more interpretable when one of the two conditions is sub-
ject to very little structural change. Moreover, if part of the
experiment has to be repeated or extended, the availability of a
stable intermediate makes current and future results compar-
able. Genomic DNA for bacterial microarray studies might
be particularly suited for this purpose, as unlike RNA it is not
subject to any expression changes though certainly subject to
noise. The gDNA samples can be incorporated into the loop
design just like any other condition.

5.4 Modelling the dye effect
As mentioned in Section 3.1, the data from the two biological
systems have been normalized before being processed further.
In principle, no dye effect is present in the data we used. For
non-normalized data, it might be of interest to model the dye
effect explicitly,

yjk = θj − θk + δ + ε,

= µjk + δ + ε

whereδ is the gene-specific dye effect. The advantage of doing
it this way is that dye normalization can be done in the same
framework we have presented in this paper by merely adding
a column of ones to the design matrixX.

6 CONCLUSION
In this paper, we have performed a comparative study between
the two commonly used designs of two-channel microarray
experiments, the loop and the reference design. We have
shown that the loop design is more efficient than the reference
design, based on two pilot studies on two very different organ-
isms (human B-cell lymphoma cell linecoelicolor bacterium)
where both designs were considered.

Comparisons between the designs are based on the average
estimated variance of the differential expression estimates.
This empirical criterion for the comparison of the two designs
is related to A-optimality. In both studies the loop design res-
ulted in a smaller average standard error. As a consequence,
more genes were detected as differentially expressed by
the loop design in theS.coelicor study than by the ref-
erence design.

These conclusions were supported by a simulation study,
where we simulated gene-expression data using a reference
and a loop design under the assumption of a known number of
differentially expressed genes. Again, the loop design proved
superior to the reference design by detecting a greater number
of truly differentially expressed genes, whilst reducing the
number of false detections. This confirms the assertion that
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by using a loop design one can get more precise answers to
the biological questions of interest.

Within this comparative study, a simple linear model was
proposed to extract the information from any microarray
design. From this model, we obtain estimates for all the con-
trasts. This will make it possible for non-experts to use and
interpret loop designs in practice. Further practical recom-
mendations were given on how the simple loop design can
be extended to more realistic designs for the case of large
experiments, how a dye effect can be accommodated in such
designs, as well as on how to decide whether or not channel
data can be analysed without transforming them to log-ratios.
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