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ABSTRACT
Motivation: In microarray experiments, missing entries arise
from blemishes on the chips. In large-scale studies, virtually
every chip contains some missing entries and more than 90%
of the genes are affected. Many analysis methods require a
full set of data. Either those genes with missing entries are
excluded, or the missing entries are filled with estimates prior
to the analyses.This study compares methods of missing value
estimation.
Results: Two evaluation metrics of imputation accuracy are
employed. First, the root mean squared error measures the
difference between the true values and the imputed values.
Second, the number of mis-clustered genes measures the
difference between clustering with true values and that with
imputed values; it examines the bias introduced by imputa-
tion to clustering. The Gaussian mixture clustering with model
averaging imputation is superior to all other imputation meth-
ods, according to both evaluation metrics, on both time-series
(correlated) and non-time series (uncorrelated) data sets.
Availability: Matlab code is available on request from the
authors.
Contact: ouyang@fidelio.rutgers.edu

1 INTRODUCTION
Microarray gene expression data can be represented as an
m × n matrix, A. The rows correspond to the genes, the
columns correspond to the experiments, and the entry Ai,j

is the expression level of gene i in experiment j . Let Ai be
row i of A: the profile of gene i across the experiments. Cluster
analysis is commonly applied to microarray data. Clustering
methods usually fall into two categories: hierarchical meth-
ods (Eisen et al., 1998) and relocational methods. Gaussian
mixture clustering is a relocational method. Starting from an
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initial partition of the genes, it iteratively moves genes from
one cluster (or component) to another, until the criterion of
convergence is met. The number of clusters must be specified
in advance. K-means clustering (Hartigan, 1975) corresponds
to a special case of Gaussian mixture clustering (Celeux
and Govaert, 1992). There are several statistics that estim-
ate the number of clusters, such as the statistic B (Fowlkes
and Mallows, 1983), the silhouette statistic (Kaufman and
Rousseeuw, 1990), the gap statistic (Tibshirani et al., 2001).
There are resampling procedures that determine the number
of clusters (Levine and Domany, 2001; Yeung et al., 2001b;
Ben-Hur et al., 2002). With Gaussian mixture clustering,
the Bayesian information criterion (BIC; Schwarz, 1978) and
the Bayes factor (Kass and Raftery, 1995) can be applied to
select the number of components.

In microarray experiments, missing entries arise from blem-
ishes on the chips. In large-scale studies involving thousands
to tens of thousands of genes and dozens to hundreds of exper-
iments, the problem of missing entries can be severe. Virtually
every experiment (column) contains some missing entries and
more than 90% of the genes (rows) are affected. Many ana-
lysis methods require a full set of data. Either those genes
with missing entries are excluded, or the missing entries are
filled with estimates prior to the analyses. This study com-
pares methods of missing value estimation. Two evaluation
metrics of imputation accuracy are employed. First, the root
mean squared error (RMSE) measures the difference between
the true values and the imputed values. Second, the number of
mis-clustered genes measures the difference between cluster-
ing with true values and that with imputed values; it examines
the bias introduced by imputation to clustering.

A simple imputation method is to fill the missing entries
with zeros (ZEROimpute). With some calculation, the row
or column averages (ROWimpute and COLimpute) can be
used. Troyanskaya et al. (2001) compared ROWimpute,
k nearest neighbor imputation (KNNimpute), and singular
value decomposition based imputation (SVDimpute). They
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found that KNNimpute and SVDimpute were vastly superior
to ROWimpute in terms of RMSE. Bar-Joseph et al. (2002)
described a model-based spline fitting method for time-series
data; it can estimate missing entries at observed time points,
and it can also predict entire columns of data at unobserved
time points.

We propose an imputation method GMCimpute, based
on Gaussian mixture clustering and model averaging. The
microarray data are assumed being generated by a Gaussian
mixture of some number of components. A multitude of estim-
ates are computed. For a missing entry, an estimate is made
from each of the components in the mixture; the estimate by
the mixture is a linear combination of the component-wise
estimates, weighted by the probabilities that the gene belongs
to the components. The final estimate by GMCimpute is the
average of the estimates by several mixtures. We use two data
sets in simulations: the yeast cell cycle data (Eisen et al.,
1998), and the yeast environmental stress data (Gasch et al.,
2000). GMCimpute is more accurate with statistical signific-
ance than KNNimpute, SVDimpute, ROWimpute, COLimpute
and ZEROimpute, in terms of both evaluation metrics.

2 METHODS AND DATA
2.1 Gaussian mixture clustering
Yeung et al. (2001a) and Ghosh and Chinnaiyan (2002) have
considered Gaussian mixture clustering of microarray data,
but they did not apply the method to missing value estima-
tions. In a Gaussian mixture, each component is modeled by
a multivariate normal distribution. The parameters of com-
ponent k comprise the mean vector µk and the covariance
matrix �k , and the probability density function is

fk(Ai |µk , �k) = exp
{ − 1

2 (Ai − µT
k )�−1

k (AT
i − µk)

}
|2π�k|1/2

.

Let K be the number of components in the mixture, and let
τks be mixing proportions: 0 < τk < 1,

∑
k τk = 1. Then the

likelihood of the mixture is

L(µ1, �1, . . . , µK , �K |A) =
m∏

i=1

K∑
k=1

τkfk(Ai |µk , �k).

�k determines the geometric properties of component k, Ck .
Banfield and Raftery (1993) proposed a general framework for
parameterization of �k , and Celeux and Govaert (1995) dis-
cussed 14 parameterizations. The parameterization restricts
the components to having some common properties, such as
spherical or elliptical shapes, and equal or unequal volumes.
We use the unconstrained model of �k , to be described below.

Given the value of K , there are two steps in Gaussian
mixture clustering. The first step initializes the mixture by par-
titioning the Ais into K subsets. We use the classic k-means

clustering with the Euclidean distance to obtain the initial
partition. The k-means clustering itself requires the initial
K means, and we use the technique of Bradley and Fayyad
(1998) to compute them. Let {C1, . . . , CK} be the partition.
The second step uses the iterative Classification Expectation–
Maximization algorithm (CEM Banfield and Raftery, 1993)
to maximize the likelihood of the mixture. There are three
steps in CEM. In the Maximization step, µk , �k and τk ,
k = 1, . . . , K , are estimated from the partition; specifically,

µk =
∑

Ai∈Ck
AT

i

|Ck| ,

�k = 1

|Ck|
∑

Ai∈Ck

(AT
i − µk)(Ai − µT

k ),

τk = |Ck|
m

.

In the Expectation step, the probabilities tk(Ai) that Ai is
generated by component k, i = 1, . . . , m, k = 1, . . . , K , are
computed; specifically

tk(Ai) = τkfk(Ai |µk , �k)∑K
l=1 τlfl(Ai |µl , �l)

.

In the Classification step, the partition {C1, . . . , CK} is
updated; Ai is assigned to Ck if tk(Ai) is the maximum
among t1(Ai), . . . , tK(Ai). CEM repeats the three steps till
the partition {C1, . . . , CK} converges.

2.2 GMCimpute
In GMCimpute, data are modeled by Gaussian mixtures,
and missing entries are estimated by the Expectation–
Maximization algorithm (EM; Dempster et al., 1977).
Assume missing entries are permanently highlighted, so
even after GMCimpute inserts values, it can still update the
estimates. Figure 1 is the algorithm. It uses K_estimate to
estimate the missing entries by 1, . . . , S-component mixtures;
the value of S is empirically determined. Each missing entry
then has S estimates; the final estimate is the average of them.
LetB be the complete rows ofA. K_estimatehas two parts.
The first part initializes the missing entries by first obtain-
ing the Gaussian mixture clustering of B, then estimating the
missing entries by EM_estimate. Let A′ be the matrix with
the initial estimates. The second part consists of a loop that
repeatedly computes the Gaussian mixture clustering of A′,
and updates the estimates. After each pass through the loop,
we use the parameters µ1, . . . , µK , �1, . . . , �K , τ1, . . . , τK to
classify the rows of A′. A′

i is assigned to cluster k if tk(A
′
i )

is the maximum among t1(A
′
i ), . . . , tK(A′

i ). The loop is ter-
minated when the cluster memberships of two consecutive
passes are identical. The EM_estimate procedure uses the
EM algorithm to estimate the missing entries row by row. To
simplify notation, we write R (in addition to Ai) as a row of
the matrix. Since there are K components, each missing entry
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Fig. 1. The GMCimpute algorithm.

has K estimates: R1, . . . , RK . The weighted average R′ of
Rks is defined by:

R′ =
∑K

i=1 Riτifi(Ri |µi , �i)∑K
i=1 τifi(Ri |µi , �i)

.

EM_estimate and K_estimate may not converge in all
cases, but they did converge in our simulation runs. Note
that, in the initialization part ofK_estimate, Gaussian mix-
ture clustering is applied to the subset of complete rows. In
subsequent iterations, all rows are used. Thus non-missing
information of incomplete rows is incorporated from the
second iteration and on. If we were to use all rows in the
initialization, we would need to apply some other imputation

method prior to GMCimpute. As we found out by simula-
tions, all other methods are not as accurate. Thus using other
methods prior to GMCimpute will introduce their biases to
imputation.

2.3 KNNimpute and SVDimpute

KNNimpute and SVDimpute were studied in the context of
microarray data imputation by Troyanskaya et al. (2001).
There are n columns in A. Let t be the number of missing
entries in a row R, 1 ≤ t < n; assume the missing entries
are in columns 1, . . . , t . Let B be the complete rows of A.
Both KNNimpute and SVDimpute require a parameter K ,
which is determined empirically. KNNimpute finds K rows,
R1, . . . , RK , in B, that have the shortest Euclidean distances
to R in the (n − t)-dimensional space (columns t + 1, . . . , n).
Let dk be the Euclidean distance from Rk to R, and let us write
R(j) for the j -th element of R. Then the missing entries of R

are estimated by: for j = 1, . . . , t ,

R(j) =
∑K

k=1 R
(j)

k /dk∑K
k=1 1/dk

.

In Singular Value Decomposition (SVD; Watkins, 1991),
the m×n matrix A, m > n, is expressed as the product of three
matrices: A = U�V T, where the m × m matrix U and the
n×n matrix V are orthogonal matrices, and � (not related to
the covariance matrices of multivariate normal distributions)
is anm×nmatrix that contains all zeros except for the diagonal
�i,i , i = 1, . . . , n. These diagonal elements are rank-ordered
(�1,1 ≥ · · · ≥ �n,n ≥ 0) square roots of the eigenvalues of
AAT. Holter et al. (2000) showed that the product of the first
two or three columns of U� and the corresponding rows of
V T can capture the fundamental patterns in cell cycle data.

Let R1, . . . , RK be the first K rows of V T, and let R be a row
of A with the first t entries missing. The estimation procedure
of SVDimpute performs a linear regression of the last n − t

columns of R against the last n − t columns of R1, . . . , RK .
Let ck be the regression coefficients. Then the missing entries
of R are estimated by: for j = 1, . . . , t ,

R(j) =
K∑

k=1

ckR
(j)

k .

SVDimpute first performs SVD on B, then it uses the estima-
tion procedure on each incomplete row of A. Let A′ be the
imputed matrix. Then SVDimpute repeatedly performs SVD
on A′, then updates A′ by the estimation procedure, until the
root mean squared error (defined in the next section) between
two consecutive A′s falls below 0.01. Note that Troyanskaya
et al. (2001) used ROWimpute to compute the first A′, whereas
the SVDimpute described here uses SVD on B to initialize the
iterations.
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2.4 Data, simulation and evaluation
The method of creating missing entries is: each entry in the
complete matrix is randomly and independently marked as
missing with a probability p. For each of the two data sets to
be described next, we use four missing probabilities to render
different proportions of missing entries.

The yeast cell cycle data1 (Eisen et al., 1998) has 6221
genes (rows) and 80 experiments (columns). The columns are
correlated; in fact, some columns are replicated experiments.
In the original data, each column has at least 182, and up to
765 missing entries. If a missing entry arises randomly and
independently with probability p, then the expected number
of genes with s missing entries is

EM = 6221

(
80
s

)
ps(1 − p)80−s .

3222 genes have no missing entry; solving for p when EM =
3222 and s = 0, we get p ≈ 0.0082. Similarly, 1583 genes
have one missing entry, p ≈ 0.0265; 478 genes have two,
p ≈ 0.0063; 178 genes have three, p ≈ 0.0088. We use the
complete 3222 × 80 matrix, and p of 0.003, 0.005, 0.007 and
0.009 in the simulations.

The yeast environmental stress data (Gasch et al., 2000) in
Stanford Microarray Database (Sherlock et al., 2001) contains
6361 rows and 156 columns. There are over a dozen stress
treatments to yeast cells. After each treatment, the time-series
expression data are collected. In contrast to the correlated
columns in the cell cycle data, for the stress data we aim to
study a subset of the 156 columns that are uncorrelated repres-
entatives of gene expression under different conditions. For
some treatments, there are a transient response and a stationary
response in gene expression. As an example, Table 1 shows
the two cliques of early and late time points of amino acid star-
vation that have large Pearson correlation coefficients within
each clique. In such a case, we choose the time point in the
clique that has the fewest missing entries as the representative,
thus denying imputation methods the information embedded
in correlated columns. Fifteen columns2 are chosen, and the
Pearson correlation coefficients among them are all less than
0.6. In the 6361 × 15 original matrix, 5068 genes have no
missing entry, p ≈ 0.0150; 806 genes have one missing entry,
p ≈ 0.0097; 185 genes have two, p ≈ 0.0188; 63 genes have
three, p ≈ 0.0318. We use the complete 5068 × 15 matrix,
and p of 0.01, 0.02, 0.03, 0.04 in the simulations.

The simulation method is: take a complete matrix; inde-
pendently mark the entries as missing with probability p;

1http://rana.lbl.gov/EisenData.htm
2Constant 0.32 mM H2O2 (80 min) redo; 1 mM menadione (50 min) redo;
DTT (30 min); DTT (120 min); 1.5 mM diamide (10 min); 1M sorbitol
(15 min); hypo-osmotic shock (15 min); amino acid starvation (1 h); amino
acid starvation (6 h); nitrogen depletion (30 min); nitrogen depletion (12 h);
YPD 25◦C (4 h); YP fructose versus reference pool; 21◦C growth; and DBY
msn2msn4 0.32 mM H2O2 (20 min).

Table 1. Pearson correlation coefficients of expression data among five time
points of yeast under amino acid starvation (correlation coefficients greater
than 0.6 are boldfaced)

Time 0.5 h 1 h 2 h 4 h 6 h

0.5 h 1.000 0.647 0.353 0.342 0.413
1 h 0.647 1.000 0.575 0.408 0.445
2 h 0.353 0.575 1.000 0.497 0.435
4 h 0.342 0.408 0.497 1.000 0.694
6 h 0.413 0.445 0.435 0.694 1.000

apply the imputation methods to obtain the imputed matrices;
compare the imputed matrices to the original one; compare the
clustering of imputed data to that of the original data. This pro-
cedure is performed 100 times for each missing probability.
One evaluation metric is the RMSE: the root mean squared dif-
ference between the original values and the imputed values of
the missing entries, divided by the root mean squared original
values of the missing entries. The other evaluation metric is
the number of mis-clustered genes between the k-means clus-
terings of the original matrix and the imputed one. The value
of K in k-means is determined by the sub-sampling algorithm
in Ben-Hur et al. (2002) and the statistic B of Fowlkes and
Mallows (1983), although Ben-Hur et al. used hierarchical
clustering and we use k-means.

3 RESULTS
The cell cycle data are represented by a 3222×80 matrix. For
missing probability p equal to 0.003, 0.005, 0.007, 0.009, the
expected numbers of incomplete rows are 688, 1064, 1385,
1659. The stress data are represented by a 5068 × 15 matrix.
For p equal to 0.01, 0.02, 0.03, 0.04, the expected numbers of
incomplete rows are 709, 1325, 1859, 2321. An incomplete
row may have more than one missing entry. As an example,
for the cell cycle data with p equal to 0.009, the expected
numbers of rows with 1, 2, 3, 4 missing entries are 1136, 407,
96, 26.

KNNimpute requires the value of K , the number of nearest
neighbors used in imputation. Figure 2 contains the plots of
average RMSEs of 100 randomized runs. The values of K

are set at 8 and 16 for cell cycle and stress data, respectively.
SVDimpute requires the value of K , the number of vectors in
V used in imputation. Figure 3 contains the plots of average
RMSE. The values of K are set at 12 and 2 for cell cycle and
stress data, respectively. GMCimpute requires the value of S:
1, . . . , S-component mixtures are used in imputation. Figure 4
contains the plots of average RMSE. For cell cycle data, the
values of S are set at 5, 3, 1, and 1 for missing probabilities
0.003, 0.005, 0.007, 0.009. For stress data, the value of S is
set at 7 for all missing probabilities.

The simulations compare six imputation methods by two
evaluation metrics. The means and standard deviations of the
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Fig. 2. Values of RMSE by KNNimpute; top: yeast cell cycle data;
bottom: yeast environmental stress data.
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Fig. 3. Values of RMSE by SVDimpute; top: yeast cell cycle data;
bottom: yeast environmental stress data.
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Fig. 4. Values of RMSE by GMCimpute; top: yeast cell cycle data;
bottom: yeast environmental stress data.

Table 2. Comparison of RMSE of six imputation methods (the entries are
mean/std of 100 randomized runs)

p 0.003 0.005 0.007 0.009
Cell cycle data
gmc 0.48/0.03 0.48/0.02 0.48/0.02 0.49/0.02
knn 0.62/0.03 0.63/0.02 0.63/0.02 0.64/0.02
svd 0.59/0.04 0.59/0.03 0.59/0.02 0.60/0.02
col 0.96/0.01 0.96/0.01 0.96/0.01 0.96/0.01
row 0.97/0.01 0.97/0.01 0.97/0.01 0.97/0.01
0 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

p 0.01 0.02 0.03 0.04
Stress data
gmc 0.70/0.03 0.71/0.02 0.71/0.02 0.72/0.02
knn 0.72/0.03 0.72/0.02 0.73/0.02 0.73/0.01
svd 0.84/0.04 0.84/0.03 0.84/0.02 0.85/0.02
col 0.96/0.02 0.96/0.02 0.96/0.01 0.96/0.01
row 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
0 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Table 3. Comparison of numbers of mis-clustered genes of six imputation
methods (the entries are mean/std of 100 randomized runs)

p 0.003 0.005 0.007 0.009
Cell cycle data
gmc 3.8/3.4 5.0/4.7 5.7/4.6 7.5/5.5
knn 4.4/3.5 5.8/3.9 8.3/5.4 10.0/5.6
svd 4.3/3.9 5.6/4.0 7.9/4.8 8.9/5.8
col 7.9/5.8 9.8/5.2 13.7/6.5 17.2/7.3
row 7.4/5.1 10.8/6.1 14.6/6.5 18.1/8.1
0 8.0/5.6 10.5/5.4 15.8/7.5 18.4/8.4

p 0.01 0.02 0.03 0.04
Stress data
gmc 44/14 75/17 97/17 124/19
knn 46/14 82/21 100/19 132/27
svd 49/14 85/27 111/20 142/29
col 60/17 95/15 128/19 163/21
row 59/22 93/19 126/21 160/25
0 57/12 93/18 125/18 162/50

first metric, RMSE, are listed in Table 2. The second metric
requires the number of clusters in the data. We find there are
three and four clusters in cell cycle and stress data, respect-
ively, by sub-sampling (sub-sampled statistics not shown).
The means and standard deviations of the second metric, the
number of mis-clustered genes, are listed in Table 3.

GMCimpute, KNNimpute and SVDimpute are clearly
superior to the other imputation methods. It seems that
GMCimpute is the best among the three methods for both
data sets, and SVDimpute is better than KNNimpute on cell
cycle data, while KNNimpute is better than SVDimpute on
stress data. All these observations have P values less than
0.05 by the paired t-tests. In fact, most of the P values are
much less than 0.05.
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4 DISCUSSION
Troyanskaya et al. (2001) was the first study of microarray
data imputation. They used a different definition of RMSE
than this work. Both studies use the same numerator: the
root mean squared difference between the true values and
the imputed values of the missing entries, but differ in the
denominator. They used the mean true values of the complete
matrix, while we use the root mean squared true values of
the missing entries as the denominator. Thus the RMSEs in
these two studies are not directly comparable. The advantage
of our definition is that the RMSE of ZEROimpute is always
one, making it easy to compare imputation difficulty across
data sets.

The stress data are more difficult for imputation than the
cell cycle data. The difference in difficulty is evident in
Figures 2–4 and Tables 2 and 3. There are at least two reas-
ons for the difference in difficulty. First, the cell cycle data
consist of correlated columns, while the stress data, by our
choice, have all uncorrelated columns. Second, the cell cycle
data have more columns than the stress data (80 versus 15).
Therefore, in practice, as many correlated columns as possible
should be used in imputation.

SVD is commonly used in dimension reduction, but it
requires a complete matrix. One way to obtain one is to
remove incomplete rows. With the cell cycle data, half of the
original rows would be removed. Given the smaller RMSE
of GMCimpute than SVDimpute, it is worthy of considera-
tion employing GMCimpute to fill in missing entries so as
to work with a larger matrix in SVD analysis. The original
studies that put microarray data in the public domain usu-
ally include cluster analyses, but almost all of them do not
explicitly employ imputation. Depending on the similarity
measure used (such as Pearson correlation coefficient) and
details of implementations, the implicit operations done for
missing entries often correspond to ROWimpute, COLimpute
or ZEROimpute. The findings of the present work indicate
that published k-means clustering results can be improved by
applying GMCimpute prior to clustering. Note that the goal
of imputation is not to improve clustering, but to provide
unbiased estimates that would prevent biased clustering.

KNNimpute uses local information in imputation, with less
than 50 genes involved in imputing one gene. SVDimpute
uses global patterns that come from all genes on the arrays.
GMCimpute uses information in the intermediate structures,
i.e. the clusters, that consist of hundreds of genes per cluster.
Gaussian mixture clustering is but one clustering method.
With some augmentation, it is likely that other clustering or
classification methods can be used for imputation too.
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