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ABSTRACT

Motivation: Affymetrix GeneChips� are common 30 profiling plat-

forms for quantifying gene expression. Using publicly available

datasets of expression profiles from human and mouse experiments,

we sought to characterize features of GeneChip� data to better

compare and evaluate analyses for differential expression, regulation

and clustering. We uncovered an unexpected order dependence in

expression data that holds across a variety of chips in both human

and mouse data.

Results: Order dependence among GeneChips� affected relative

expression measures pre-processed and normalized with the

Affymetrix MAS5.0 algorithm and the robust multi-array average

summarization method. The effect strongly influenced detection calls

and tests for differential expression and can potentially significantly

bias experimental results based on GeneChip� profiling.

Contact: Kathe.bjork@cudenver.edu

Supplementary information: Supplementary Material, including

links to files of ordered transcripts and supporting analyses, is

available at the authors’ websites, at http://www-math.cudenver.

edu/~kbjork/research/, and http://www-math.cudenver.edu/~kk/

research/.

1 INTRODUCTION

Affymetrix GeneChips� are common 30 profiling platforms for

quantifying gene expression. These chips are dense microarrays

of single-stranded 25-base oligonucleotides synthesized in situ

for hybridization to single-stranded mRNA-derived comple-

mentary RNA (cRNA) from target tissues, capable of

quantifying relative expression of tens of thousands of genes

simultaneously. The current version of the human GeneChip�,

the HG-U133 Plus 2.0 array, contains 54 675 probe sets for

querying the full complement of known human mRNA

transcripts and variants and a set of known Affymetrix controls

via 1.3 million distinct oligonucleotide features (Affymetrix,

2004). Each gene or control is represented on the HG-U133

Plus 2.0 array by 11–20 oligonucleotide segments selected for

uniqueness, with each segment tiled into probe pairs of perfect

matched (PM) and mismatched (MM) oligonucleotides.

Each PM strand hybridizes to its complement in target cRNA,

while MM strands, with a central base switch (at number 13)

to destabilize and repulse binding, serve as a vague control.

To reduce potential spatial effects, Affymetrix has distri-

buted probe pairs throughout the chip. Some investigators

have suggested that MM values are not exact controls, and

have developed probe summarization methods that disregard

them.

Systematic perturbations arising from chip design or

manufacturing, sample processing or instrumentation can be

non-trivial in such massive datasets. As we demonstrate herein,

data from two current and three historical GeneChip�

platforms contain a systematic order-dependent pattern that

manifests as a major determinant of PM and MM values, with

the resulting effect carried forward into estimates of relative

expression and variance, detection calls and significance tests

for differential expression. Neither of two of the most

commonly employed algorithms for summarizing PM and

MM values detects, reports or adjusts for this effect.

Experiments conducted without adjustment for the effect are

likely to have inflated type I and II error rates.

2 APPROACH

Using publicly available datasets of Affymetrix GeneChip�

30 expression profiles from human and mouse experiments, we

began this study with the intention of trying to characterize the

features of gene expression data, to better model such data and

thereby compare and evaluate the performance of various

detection algorithms for differential expression, regulation and

clustering. During this investigation we uncovered an unex-

pected order dependence in GeneChip� expression data that

appears to hold, sometimes to a significant extent, across a

variety of chips. We describe order-dependent patterns in

multiple chip types, demonstrate their significant influence in

expression analysis, inference and estimation, and introduce

a potential method for correction.*To whom correspondence should be addressed.
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3 METHODS

GeneChip� data from hybridization of cRNA targets to probes are

measured as relative levels of emission in 64 (8 � 8) pixels in each PM

or MM tile. The outer perimeter of pixels is discarded and the

75th percentile of the central 36 (6 � 6) pixels is recorded as the probe

pair PM or MM value. These values are collected into .CEL files with

accompanying probe location information.

Various statistical methods have been designed and implemented to

summarize probe pair data in .CEL files into relative quantitative

expression measures. We used pre-processing software from the

Bioconductor project (http://www.bioconductor.org, version 1.8), an

open source repository for routines for probe- and higher-level genomic

analyses. The ‘affy’ package (Gautier et al., 2003) implements routines

for several summarization algorithms, including two commonly used,

Affymetrix’ Microarray Suite Statistical Algorithm version 5.0

(MAS5.0) signal value (SV) (Affymetrix, 2002) and the robust multiarray

average (RMA) (Irizarry et al., 2003). SV summarization proceeds

chipwise with a zone-dependent background correction and normal-

ization, winsorization, computation of an ‘ideal’ match for probe pairs

with MM4PM, and a robust procedure, Tukey’s one-step biweight, to

reduce sensitivity to outlier probe pairs (Affymetrix, 2002). In our

analyses, SVs were log2-transformed after SV expression computation.

Developers of the ‘affy’ package for computing SVs caution that their

MAS5.0 routine (‘mas5()’) was compiled from descriptions in published

corporate literature and not from code obtained directly from the

company, and hence results may not exactly replicate those obtained

with the company’s proprietary software (Gautier et al., 2003). Some

pre-processed SVs and ‘detection calls’ (of present versus absent

transcripts, see below) were available online with corresponding .CEL

files. If SVs were not available with the .CEL files, we used ‘affy’ package

software to compute them. In all analyses with SVs, we note the package

used to compute them.

RMA values are multi-chip model-based relative expressions based

solely on PM values. RMA summarizes a collection of arrays via

background correction, log-transformation and normalization, and

gene-by-gene processing with robust median polish. Developers

recommend the default quantile normalization for RMAs, and, unless

noted otherwise, we accepted this default in our analyses (Bolstad et al.,

2003). All .CEL files were processed with the ‘rma()’ routine from the

‘affy’ package to obtain RMA values.

Publicly available human and mouse GeneChip� data were obtained

from Affymetrix corporate, Harvard CardioGenomics Project

(CardioGenomics PGA, 2007) and National Center for Biotechnology

Information Gene Expression Omnibus (NCBI-GEO) website

repositories (Table 1). Affymetrix Inc. shares .CEL file data with

researchers and developers for algorithm development. Their

‘Demonstration Data’ website (http://www.affymetrix.com/support/

technical/sample_data/demo_data.affx) contains data files of

GeneChip� experiments from several organisms. We used experimental

data from four human HG-U133A, eight HG-U95Av2, one

Mouse430A and four mouse MG-U74Av2 chips in this analysis.

The NCBI-GEO (http://www.ncbi.nlm.nih.gov) is a gene expression

and molecular abundance repository supporting MIAME compliant

data submissions and is a curated, online resource for gene expression

data browsing, query and retrieval. Eight files were accessed from an

investigation of prostate cancer progression, GEO Accession GSE3325

(www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE3325),

four each of benign and metastatic tumor profiles. We used .CEL files,

SVs and detection calls contributed by the primary investigators

(Varambally et al., 2005) in our analyses.

The CardioGenomics Project (http://cardiogenomics.med.harvard.

edu/) shares data on genomic investigations of human and animal

models of cardiovascular disease. The project goal is to explore gene

linkages with functional, dysfunctional and structural abnormalities of

the cardiovascular system caused by clinically relevant genetic and

environmental stimuli. Forty-six HG-U133 Plus 2.0 cardiac tissue .CEL

files were selected from collections (14 control ‘clinically normal’ and 32

ischemic profiles). Both .CEL files and SVs computed by the Cardio-

Genomics project were used in these analyses. To control for potential

confounding by array lot, we used 11 normal and 12 ischemic tissue

profiles with the same probe array lot number reported in quality control

data, and confirmed our results with the complete set of 46 arrays.

Typically, PM and MM values are recorded in .CEL files in an

ordered sequence of Affymetrix gene identifiers, a series of 3–8

numbers, 1–2 underscores, and 1–3 letters. Transcript order reporting

varies according to pre-processing routine. Bioconductor software for

SVs and RMA expressions records transcripts in alphanumerically

ascending sequence beginning with the leftmost character and proceed-

ing through the rightmost character. Among mRNA transcripts the

leftmost characters are usually digits; in Affymetrix controls it is an

alpha prefix ‘AFFX’. In the chips we examined Bioconductor software

placed AFFX controls in the terminal 62–67 rows of data (Table 2).

We accepted Bioconductor ordering in all of our analyses. For ease of

display, transcripts and controls in .CEL, SV and RMA files were

assigned a numeric index according to sequence. In the HG-U133 Plus

2.0 chip, transcripts were indexed 1:54 675 starting with Affymetrix

probe identifier 1007_at and ending with AFFX-TrpnX-M_at. Patterns

of order dependence were demonstrated by plotting gene expression

values according to index. We demonstrate order-dependence in the

current human HG-U133 Plus 2.0 and mouse MOE430A chips as well

as earlier generation chips HG-U133A, HG-U95Av2 andMG-U74Av2.

To investigate potential biological explanations for the order

dependence, 40 genes were selected from regions of HG-U133 Plus

2.0 chips, 20 each on either side of the estimated point where clear

pattern shifts occur. Chromosomal location, gene name, tissue type and

common biochemical pathways were recorded for these genes and

evaluated for potential commonalities.

The MAS5.0 statistical algorithm computes a ‘present’, ‘marginal’ or

‘absent’ detection call and an associated detection P-value for each

transcript via statistical analysis of probe pairs (Affymetrix, 2002). The

detection call algorithm defines as absent any expression level below

a threshold of detection, i.e. ‘not provably different from 0’. Detection

calls are determined for each probe set by removing saturated probe

pairs or those with minimal differences, calculating a discrimination

score for each probe pair; and testing for significance of the score.

Genes with detection p50.04 are called ‘present’. ‘Marginal’ detections

are those genes with 0.04 5 p 5 0.06, and genes with p 4 0.06 are

reported ‘absent’. Investigators may use these detection calls and

Table 1. Data sources, number of files, GeneChip� type and example

file identifiers1

Data source Number

of files

Type of chip Example

filename

Affymetrix 4 HG-U133A HG-U133A-1-121502

Demonstration 8 HG-U95Av2 1521l99hpp-av06r

Data 1 Mouse430A Mouse430A_031903

4 MG-U74Av2 MG-U74Av2-1-121502

Harvard 46 HG-U133 Plus 2.0 PA-N_300

CardioGenomics

NCBI-GEO 8 HG-U133 Plus 2.0 GSM74489

GSE3325

1See Supplementary Material for a complete list of data sources, filenames and

links to original data.
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P-values as selection criteria for consideration of genes for further

analysis. We used detection calls and SVs from prostate cancer study

profiles (NCBI-GEO Accession GSE3325) in assessing order depen-

dence effects on detection calls.

All statistical analyses, data processing and plots of pre-processed

and normalized data were performed using ‘R’ project software

(www.r-project.org, version 2.4.1). Determinations of block break-

points were estimated by visually assessing regions with obvious shifts

in ordered plots of log(SV)s and RMAs in multiple tissue and sample

profiles. Estimated breakpoints were checked with plots of running

means and medians.

Order dependence in expression value variance according to pre-

processing method was evaluated using cardiac tissue profiling with

HG-U133 Plus 2.0 chips from the CardioGenomics Project. MAS5.0

SVs were downloaded from the project website and compiled, normal-

ized with median-based methods, and log-transformed with National

Cancer Institute’s Biometrics Research Branch Array Tools software

version 3.5 (Simon and Lam, 2006). RMA expressions were computed

using Bioconductor routines. Expression value variance and SD were

evaluated according to index and relationship with mean expression

values. Results were replicated via an identical analysis using prostate

cancer profiles with HG-U133 Plus 2.0 chips obtained from the NCBI-

GEO. (See Supplementary Material for further results of analyses of

prostate cancer expression.)

To explore the effect of order dependence on differences between

group means and on basic measures of differential expression, we

computed the between-group mean difference for each transcript,

i.e. mean(normal)�mean(ischemic) and two-sample significance tests

with log(SV)s and RMA expressions from CardioGenomics data.

Conventional (normal-based) t-tests (applying both a Welch t-test

allowing for unequal variance and a pooled t-test assuming equal

variances) andWilcoxon’s rank sum non-parametric test were calculated

for each transcript to assess the significance of the effect. For data

reduction and pattern detection by index, we applied a linear smoother to

mean differences, test statistics and P-values, first by computing running

means of length 7 to remove fine noise and then computing a smoothing

spline for gross patterns. Mean differences, test statistics and associated

P-values were plotted by index.

Once order dependence is detected or suspected, chip(s) may require

correction at the probe pair (PM and MM) or probe-summary level for

valid inference. Using CardioGenomics data, we adjusted each

individual array’s RMA and median-based normalized log(SV) expres-

sions with a smoothing spline by subtracting the smoothed fitted value

from the observed value and replacing the observed value with the

residual. Plots of ordered residuals, variance and SD of the residuals

were evaluated for ability to remove the systematic effect. Residuals

were also used in Welch t-tests and Wilcoxon rank sum tests to evaluate

diminution of order dependence via smoothing.

4 RESULTS

A systematic order-dependent effect was evident and pro-

nounced in indexed plots of log(PM), log(MM), log(SV) and

RMA values from publicly available datasets of five human and

mouse GeneChip� types, and within those chip types transcript

order was a major determinant of relative expression value and

variance. Figure 1 shows the complex order-dependent patterns

in HG-U133 Plus 2.0 expressions in one sample, PA-N_300,
from the CardioGenomics project data. This sample is typical of

all HG-U133 Plus 2.0 chip data that we examined. Log(SV)s

ranged approximately�2 to 15 units with some truncation in the

higher values. RMAs ranged approximately 3–14 units, with

distributions truncated in the lower levels in the first block, and

in the higher-indexed values in the other blocks. Chips were

characterized by 14 grossly visible variably sized blocks, with
block intersections at indices approximately 9937, 18 028,

21 230, 27 000, 30 744, 31 663, 32 255, 33 814, 40 933, 44 210,

50 592, 54 148, and 54 618. Some blocks were very large, such as

the first block, and some blocks were quite small, such as those

around index 30 000. Blocks with higher indices, such as those

greater than 40 000, tended to have less discernable intersections.

Table 2. Fifteen initial and 15 terminal sequences of Affymetrix

identifiers in HG-U133 Plus 2.0 and HG-U133A GeneChips�1

HG-U133 Plus 2.0 HG-U133A

1:15 54 661:54 6752 1:15 22 269:22 2832

1007_at -r2-Ec-bioB-3_at 1007_at -r2-Ec-bioD-5_at

1053_at -r2-Ec-bioB-5_at 1053_at -r2-Hs18SrRNA-3_s_at

117_at -r2-Ec-bioB-M_at 117_at -r2-Hs18SrRNA-5_at

121_at -r2-Ec-bioC-3_at 121_at -r2-Hs18SrRNA-M_x_at

1255_g_at -r2-Ec-bioC-5_at 1255_g_at -r2-Hs28SrRNA-3_at

1294_at -r2-Ec-bioD-3_at 1294_at -r2-Hs28rRNA-5_at

1316_at -r2-Ec-bioD-5_at 1316_at -r2-Hs28rRNA-M_at

1320_at -r2-P1-cre-3_at 1320_at -r2-P1-cre-3_at

1405_i_at -r2-P1-cre-5_at 1405_i_at -r2-P1-cre-5_at

1431_at -ThrX-3_at 1431_at -ThrX-3_at

1438_at -ThrX-5_at 1438_at -ThrX-5_at

1487_at -ThrX-M_at 1487_at -ThrX-M_at

1494_f_at -TrpnX-3_at 1494_f_at -TrpnX-3_at

1552256_a_at -TrpnX-5_at 1598_g_at -TrpnX-5_at

1552257_at -TrpnX-M_at 160020_at -TrpnX-M_at

1See Supplementary Material for links to files with complete lists of ordered

probeset identifiers (Affymetrix IDs) for HG-U133 Plus 2.0, HG-U133A, HG-

U95Av2, Mouse430A and MG-U74Av2 GeneChips�.
2Affymetrix control identifiers in terminal sequences all begin with ‘AFFX-’.

Fig. 1. Log(PM) (top), log(MM), log(SV) and RMA (bottom) expres-

sion values by index, HG-U133Plus2.0 GeneChip�, sample PA-N_300,

CardioGenomics project data. All probe level summarizations were

computed with ‘affy’ package, BioConductor version 1.8 software.
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A subterminal block of approximately 465 genes had uniformly

greater expression values among both RMAs and SVs, and the

62 Affymetrix controls in the terminal location extended the full

range of expression value. These patterns can be more easily

discerned in plots of running medians of length 7 (Fig. 2),

wherein fine noise has been reduced. These plots indicate that the

14 blocks may be comprised of smaller sub-blocks.
For both summarization methods, genes with the highest

expression levels within blocks tended to be those with the

lowest indices, and high-index genes tended to have expressions

roughly 2–4 units smaller. This disparity is most obvious

between the first two blocks; the mean expression of high-index

block 1 genes is similar to the low-expressed (perhaps non-

expressed) block 2 low-index genes. This relationship at block

junctures does not hold across all blocks, and there are some

blocks, especially in the highest level indices (440 000), that

appear U-shaped or uniformly elevated.
No clear biological or tissue-related explanation for pattern

shifts could be found in comparisons of the groups of genes

surrounding the first four and the final block intersections

when examined by chromosome number or location, gene name

or function. However, two intersecting regions, blocks 1:2 and

blocks 13:14 (Table 3), showed major changes in Affymetrix

identifier numberings.
Profiles from the earlier versions of the human GeneChip�

HG-U133A obtained from Affymetrix Demonstration Data

exhibited similar systematic pattern shifts (Fig. 3). The patterns

were less complex, with four major peaked blocks, a fifth

U-shaped block, and a terminal collection of Affymetrix

controls spanning the full breadth of expression. Patterns

were evident in log(PM), log(MM), log(SV) and RMA expres-

sion values. Log(SV)s and RMA expressions in three other chip

types all exhibited a high degree of order dependence in highly

variable and complex patterns (Fig. 4). Indexed HG-U95Av2

data exhibited a systematic oscillatory pattern more prominent

in log(SV)s, and mouse chips, Mouse430A and MG-U74Av2,

contained mixtures of narrow and wide oscillations. Overall,

within-chip block patterns were identical from disparate data

and tissue sources using the same chip type. Block patterns,

lengths, discernible breaks and shifts differed between different

chip types and species.

The impact of order dependence is evident in detection calls

and their associated P-values. Plots of HG-U133 Plus 2.0

log(SV)s, detection calls and P-values from one sample of the

prostate cancer data (Fig. 5) show that the highest expression

levels are directly correlated with the lowest P-values. Detection

P-values associated with expression peaks are lower than those

of the surrounding genes, and are therefore more likely to be

called ‘present’. Closer inspection of this relationship among

genes indexed 5000:15 000 (Fig. 6), at the intersection of blocks

1:2, shows that at index approximately 9937, the distribution of

P-values abruptly changes from one more uniformly discrete, to

one with a sparsity of genes with large P-values. Given their

lower P-values, genes indexed 9937 to approximately 14 000

would preferentially be selected for further analysis.
A cursory examination of the relationship between transcript

means and log(SD)s of log(SV)s and RMA expressions,

respectively, (Fig. 7) of the eight arrays of the prostate cancer

dataset shows the relationships between probe summary

measures and variance. To better illustrate the trends within

Fig. 2. Running medians of length 7, log(SV)s (left) and RMA

expressions (right) by index, HG-U133Plus2.0 GeneChip� sample

PA-N_300, CardioGenomics project data.

Table 3. Block, index, Affymetrix identifier and transcript information

for genes at three block intersections, HG-U133 Plus 2.0 GeneChip�

Block intersection index Affymetrix

identifier

Gene

symbol

Chromosomal

location

1:2 9935 1570639_at CASC4 15q15.3

9936 1570644_at NA1 NA

9937 1570645_at NA NA

9938 1570650_at CCBL1 9q34.11

9939 1570651_at CCBL1 9q34.11

9940 1570653_at NA NA

9941 1598_g_at GAS6 13q34

9942 160020_at MMP14 14q11-q12

9943 1729_at TRADD 16q22

9944 1773_at FNTB 14q23-q24

9945 177_at PLD1 3q26

9946 179_at PMS2L11 7q11.23

9947 1861_at BAD 11q13.1

9948 200000_s_at PRPF8 17p13.3

2:3 18 024 208605_s_at NTRK1 1q21-q22

18 025 208606_s_at WNT4 1p36.23-p35.1

18 026 208607_s_at SAA1, SAA2 11p15.1

18 027 208608_s_at SNTB1 8q23-q24

18 028 208609_s_at TNXA,TNXB 6p21.3

18 029 208610_s_at SRRM2 16p13.3

18 030 208611_s_at SPTAN1 9q33-q34

18 031 208612_at PDIA3 15q15

18 032 208613_s_at FLNB 3p14.3

13:14 54 141 244890_at SLC22A6 11q13.1-q13.2

54 142 244891_s_at PVT1 8q24

54 143 266_s_at CD24 6q21

54 144 31637_s_at THRA, NR1D1 17q11.2

54 145 31799_at COPB2 3q23

54 146 31807_at DDX49 19p12

54 147 31826_at FKBP15 9q32

54 148 31835_at HRG 3q27

54 149 31837_at TMEM153 22q13.33

54 150 318 45_at ELF4 Xq26

1NA¼not available.
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the blocks, highlighted by vertical segments, the values have

been smoothed by a simple running means smoother (length 7)

followed by application of a smoothing spline, indicated by the

solid line. For both RMA and log(SV), the averaged gene

expression values tend to decline with order number within each

block. However, the trends in log(SD)s are reversed for the two

types of expression summarizations: the SDs decrease with

increasing average log(SV)s, but SDs of the RMAvalues increase

with increasing average RMA value (see Supplementary

Material for an expanded analysis of prostate cancer data).
The order dependence effect carried forward into between-

group mean differences and significance tests for differential

expression (Figs 8 and 9). Smoothed plots of mean differences

by comparison group, and Welch t- and Wilcoxon rank sum

statistics and associated P-values show characteristic peaks

and troughs by index and block, corresponding with block

breakpoints. These figures show that the ‘block effect’ is

dampened compared with that in Figure 1, but is not eliminated

by the calculated t- or Wilcoxon statistic, because the effect

appears to remain in the mean difference (numerator of the

t-statistic) as well as in the SDs. No difference was detected by

type of t-test variance, as both pooled-variance and Welch

t-tests produced similar results. A review and exploration of

published quality control data relative to group status of the

CardioGenomics data produced no explanation for the effects

(see Supplementary Material for abstracted quality control data

related to the CardioGenomics project).
Application of a smoothing spline to expression values and

replacing observed values with residuals from the fit was

Fig. 3. Log(PM) (top), log(MM), log(SV) and RMA (bottom)

expression values by index, HG-U133A-1-121502, Affymetrix

Demonstration Data.

Fig. 4. Log(SV) (left) and RMA (right) expression values by index,

human HG-U95Av2 (top), and mouse Mouse430A (middle) and

MG-U74Av2 (bottom) GeneChips�, Affymetrix Demonstration Data.

Fig. 5. Log(SV) (top) and detection call P-values (bottom) by index,

HG-U133Plus2.0 GeneChip�, sample GSM74489, NCBI-GEO

Accession GSE3325 prostate cancer dataset.

Fig. 6. Log(SV) (top) and detection call P-values (bottom), indices

5000-15 000, HG-U133Plus2.0 GeneChip� sample GSM74489,

NCBI-GEO prostate cancer dataset.
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successful in zeroing the mean expression level baseline (Fig. 10,

upper left). However, transcript variance was not stabilized

among residuals (Fig. 10, upper right), as shown by the plots of
the smoothed log(SD)s of log(SV)s and RMA expressions.

Consequently, significance tests using the residuals were not
substantially improved (Fig. 10, bottom panels), as smoothed

plots of P-values from both t-tests and Wilcoxon tests still
exhibited within- and between-block effects.

5 DISCUSSION

We observed an order dependence in relative gene expression
values calculated from publicly available data collected using

five types of Affymetrix GeneChips�, including two types cur-

rently in use in human and mouse expression profiling. Order
dependence patterns were very similar across disparate tissue

types and laboratories. There was no obvious biological basis for
the observed patterns, suggesting that the dependence did not

arise from specific chromosomal, tissue or other target sources.
Order dependence is characterized by baseline shifts and

trends both within and between blocks and can be visualized by
plotting transcripts in the order reported from the Affymetrix

GeneChip� analysis system (Affymetrix, 2002) and Bioconduc-

tor (Gautier et al., 2003) routines. In the five types of chips we
examined (HG-U133 Plus 2.0, HG-U133A, HG-U95Av2,

Mouse430A and MG-U74Av2), the number and morphology
of blocks varied widely by chip type. Absolute block boundaries

were often difficult to distinguish. The majority of blocks began
with high relative expression levels, underwent linear or quad-

ratic downward drifts and were often terminated at a juncture

with the next block. At such junctures, mean relative expressions
could shift by up to four units on the log2 scale. Some blocks’

expression values had U-shaped distributions or contained
oscillating baselines (as in the HG-U95Av2 chip), and some

chips contained a mixture of blocks with abrupt shifts, drifts

and oscillations. These patterns were very similar in expression
levels computed and normalized with two of the most common

expression value summarization methods, the MAS5.0

Statistical Algorithm (SV) (Affymetrix, 2002) and the robust

multi-chip average RMA (Irizarry et al., 2003).
Variance of GeneChip� expression profiles also exhibited

order dependence, as shown in plots of mean expression values

and logarithms of SDs (log(SD)s) relative to index. Smoothed

log(SD)s had baseline shifts and within-and between-block

variability similar to that noted in mean expression levels.

However, whereas log(SD)s and means of RMA expressions

were positively associated, log(SD)s and means of log(SV)s had

an inverse relationship. These results differed from those

reported by the developers of the RMA expression (Irizarry

et al., 2003), who based their model on the HG-U95Av2 chip.

Fig. 7. Means of log(SV)s and RMA expressions (top panels), and

log(SD)s of log(SV)s and RMAs (lower panels), by index,

HG-U133Plus2.0 GeneChips�, NCBI-GEO prostate cancer data.

Fig. 8. Mean differences of RMA values (top) and log(SV)s (bottom),

by index, HG-U133Plus2.0 GeneChips�, CardioGenomics data. Dots

are running means (length 7) of the between-group mean difference

(mean(normal)–mean(ischemic)); solid horizontal line is the overall

median of the running means; wavy solid line is a smoothing spline

applied to the running means and dashed vertical lines indicate

estimated blocks.

Fig. 9. Test statistics (upper panel) and P-values (bottom panel) from

significance testing via t-test (left panel) and Wilcoxon rank sum test

(right panel), smoothed by index, control versus ischemic cardiac

tissues, HG-U133Plus2.0 GeneChips�, CardioGenomics project data.
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In the RMA development report, SDs increased with average

expression level for all summarization methods examined.

Because our analyses were based on these same summarization

methods, it is not clear why the relationship between the mean

and log(SD) among transcripts processed with MAS5.0 SV

algorithm did not hold in the newer generation GeneChip�.

Studies are underway to evaluate this relationship in other

GeneChip� varieties and summarization methods, and to

explore appropriate models and potential transformations for
expression value and variance adjustment (see also Supplemen-

tary Material for results using two different summarization

methods on NCBI-GEO Accession GSE3325 prostate cancer

study data).
When detection call P-values are used to select transcripts for

further study, order dependence may bias the selection process.

We observed in multiple tissue types that transcripts with the

highest expression values tended to occur among lower indexed

genes within blocks and that these genes had the lowest

detection P-values. This was especially apparent at the inter-

section of the first two blocks in the HG-U133 Plus 2.0 chip.
A second potential bias due to order dependence was

demonstrated in our examination of the differences between

group means and in differential expression studies. In plots of

between-group mean differences and two-sample tests compar-

ing control and ischemic cardiac tissues, we observed that, in

most blocks,the largest (absolute) magnitude mean differences

and test statistics and the smallest P-values were strongly

associated with spikes in expression values occurring among the
lowest block indices. These effects occurred with both log(SV)s

and RMAs and were duplicated with 46 arrays from the

CardioGenomics project. The same analysis with eight prostate

cancer tissue profiles from the NCBI-GEO database (see

SupplementaryMaterial) produced similar results. This suggests

that the effect is not localized to specific datasets or laboratories.

The application of median-based normalization methods using

the BRB ArrayTools software did not appear to mitigate
the effect. Although it seems plausible that the order-dependence
effect should cancel out in significance tests between ‘target’ and

‘control’ groups, it did not. We found no explanation for this in
available quality control data. We also explored potential
misalignment of blocks as a possible explanation; however,

block shifts appeared to occur at the same breakpoints in the
data. These results may be a spurious finding in these particular
datasets andmay not be replicable in other laboratories or under

different experimental conditions. More detailed investigations
are warranted to clarify these findings.
The full implications of the order dependence effect on diff-

erential expression remains to be seen. Because the expression
levels are elevated for genes that are indexed at the beginning of
a block, for all arrays in an experiment, P-values likewise tend

to indicate ‘significance’ even in the absence of any real effect.
Consequently, multiple testing procedures such as the method
of false discovery rate (Benjamini and Hochberg, 1995) that

focus on genes with the smallest P-values will likewise pre-
ferentially select those genes that are indexed at the beginning
of blocks.

The cause of the order-dependence effect was not readily
discernable from examinations of publicly available data.
Because details of GeneChip� design and manufacturing

specifications, processes and instrumentation are proprietary,
we were unable to relate our findings to particular character-
istics of the system, or to undertake any meaningful directed

diagnostics such as those that can be performed with cDNA
microarrays generated in-house (Balazsi et al., 2003). Lacking
this proprietary production-specific information, these findings

remain descriptive of symptoms and not etiology. This severely
limits clarification of the source of the bias and potential
avenues for remediation. Furthermore, because these effects

varied across GeneChip� versions and generations, compre-
hensive diagnostics, etiologies and chip-specific remediation
may require access to and review of historical system-wide

manufacturing information and specifications. The determina-
tion of causes for these trends will require collaboration among
biologists, R&D and processing engineers, data monitors and

statisticians.
One proposed method for bias correction is the post hoc

adjustment of computed expression measures with localized

non-parametric regression, the application of a smoothing spline
and removal of fitted, or expected, expression level and
replacement with the residual from the regression. Although

our smoothing spline method was effective in stabilizing the
baseline of expression values and removing the majority of
order-dependent effects from expression values, it was not

satisfactory in stabilizing the variance and the influence of the
effect on differential expression. Further work is required to
understand and remediate systematic chip effects on the mean

difference and variance.
Other methods of adjustment are currently under investiga-

tion, including multiple-array z-score methods for stabilizing

variance and individual array ‘change point detection’ methods
such as those used in industrial process control monitoring
(Vardeman and Jobe, 1999) to discern between and within-

block trends, for detecting both abrupt and gradual up- and
downward shifts in series of data. If subsets can be identified

Fig. 10. Residuals of smoothed log(SV)s of one control tissue profile,

by index (upper left); log(SD) of residuals from smoothed log(SV)s and

RMA values, smoothed by index, (upper right); P-values from t-tests

(lower left) and Wilcoxon rank sum tests (lower right), by index, normal

versus ischemic cardiac tissues, HG-U133Plus2.0 GeneChips�,

CardioGenomics project data.
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and transcripts correctly classified into blocks, the subsets can
be better characterized with improved parameterizations and
analytical methods selected to produce more reliable and valid
summary, detection and differential expression measures.

In addition, studies of the effects of order dependence on
sensitivity, specificity and synchronization of GeneChip� data
with other platforms are underway.

While numerous corrective methods may be applied, and
likely successfully, a more fruitful approach to solving order-
dependence related problems will be to identify and remediate

the source(s) for the varied within- and between-block effects.
Current pre-processing and normalization procedures for
GeneChip� analyses may be adequate for assuring common

levels and ranges of gene expression values across arrays, but
may be inadequate for normalizing out the order effects noted
within arrays.
The impact of order dependence on Affymetrix expression

profiling experiments is likely to extend beyond transcript
measurements and investigations of differential expression.
Results from the prostate cancer progression study

(Varambally et al., 2005) suggest that controlling or adjusting
for order dependence in transcript profiling holds promise for
improving concordance between measurements of mRNA

transcripts and translated peptides and proteins. In the prostate
cancer study, investigators estimated 61% concordance in
gene:protein expression for clinically localized prostate cancer
relative to benign prostate tissue, and 48% concordance for

metastatic prostate cancer relative to clinically localized disease.
Once the impact of order dependence in 30 profiling experiments
with Affymetrix GeneChips� is more fully characterized and

explained, it is possible that improvements in concordance of
gene:protein expression may follow.
We found no mention of order dependence or its con-

sequences in any corporate literature or in references of com-
monly used summarizations for probe-pair data computed from
.CEL files, including Affymetrix’ MAS5.0 algorithm, their

newer probe summarization method ‘probe logarithmic inten-
sity error estimation’ (PLIER) (Affymetrix, 2007), RMA, or the
Li–Wong model-based expression index (MBEI, (Li and Wong,
2001)), although it is likely some of these summary measures

were developed using older generations of chips, (such as the
HuGeneFl chip noted in the MBEI method), when greater levels
of noise perhaps obscured the order dependence. Summarization

methods for probe level data continue to be an active area of
research for GeneChips�, and up to 50 different probe summary
methods have been proposed (Chen et al., 2007). One difficulty

we encountered in comparing different summary measures was
differing output transcript order by summarization designer.
We suggest that, if order dependence is proven to be an impor-
tant factor in Affymetrix GeneChip� analyses, all summariza-

tion methods be output in a standardized order for ease of
comparison (such as in Supplementary Material). We also
recommend that all current and previous generations of

GeneChips�, across all organisms, be evaluated for order
dependence and its potential biases, and that these investigations
be conducted in a variety of laboratories, under different

experimental conditions, and using the full spectrum of 30

expression profiling GeneChips� to fully assess the occurrence
and importance of the effect.

6 CONCLUSION

This report of a significant within-array order-dependent effect

in multiple types of Affymetrix 30 expression profiling

GeneChips� demonstrates that GeneChip�-based experiments

likely require both within- and between-chip transformation and

normalization to produce valid inference, and that further inves-

tigations are warranted to better understand the etiology and

impacts of the effect. If order dependence is proven as a

significant source of bias in the Affymetrix 30 expression profil-

ing system, appropriate technical and statistical methods for

remediation should be developed and applied. Lacking a full

understanding of the source of the effect, investigators will be

restricted to addressing symptoms with chip- and species-specific

statistical patches. Once order dependence is better understood

and adjustments applied, the benefits may be far-reaching.

Historical datasets can be re-analyzed andmay reveal previously
obscured information, including improved inference from

differential expression and concordance with protein expression

studies.
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