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Abstract
Background: Numerous feature selection methods have been applied to the identification of
differentially expressed genes in microarray data. These include simple fold change, classical t-
statistic and moderated t-statistics. Even though these methods return gene lists that are often
dissimilar, few direct comparisons of these exist. We present an empirical study in which we
compare some of the most commonly used feature selection methods. We apply these to 9 publicly
available datasets, and compare, both the gene lists produced and how these perform in class
prediction of test datasets.

Results: In this study, we compared the efficiency of the feature selection methods; significance
analysis of microarrays (SAM), analysis of variance (ANOVA), empirical bayes t-statistic, template
matching, maxT, between group analysis (BGA), Area under the receiver operating characteristic
(ROC) curve, the Welch t-statistic, fold change, rank products, and sets of randomly selected
genes. In each case these methods were applied to 9 different binary (two class) microarray
datasets. Firstly we found little agreement in gene lists produced by the different methods. Only 8
to 21% of genes were in common across all 10 feature selection methods. Secondly, we evaluated
the class prediction efficiency of each gene list in training and test cross-validation using four
supervised classifiers.

Conclusion: We report that the choice of feature selection method, the number of genes in the
genelist, the number of cases (samples) and the noise in the dataset, substantially influence
classification success. Recommendations are made for choice of feature selection. Area under a
ROC curve performed well with datasets that had low levels of noise and large sample size. Rank
products performs well when datasets had low numbers of samples or high levels of noise. The
Empirical bayes t-statistic performed well across a range of sample sizes.

Background
Microarrays enable the simultaneous measurement of the
expression levels of tens of thousands of genes and have
found widespread application in biological and biomedi-
cal research. The use of microarrays to discover genes,

which are differentially expressed between two or more
groups of patients has many applications. These include
the identification of disease biomarkers that may be
important in the diagnoses of the different types and sub-
types of diseases [1]. Although increasing numbers of
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multi-class microarray studies are performed, the vast
majority continue to be two class (binary) studies, for
example where a control and a treatment are examined. In
this case, the object of the study, is to determine the genes
that are differentially expressed between the two classes.
The number of gene probes represented on microarray
chips may exceed 50,000 and the number of cases (sam-
ples) in microarray studies is frequently limited. This
presents a considerable dimensionality issue, which
together with the noise inherent in microarray data is a
significant challenge to any feature selection approach.

Numerous feature selection methods have been applied
to the detection of differentially expressed genes on
microarrays. Different methods produce gene lists that are
strikingly different [2], yet few studies have compared
methods. This is largely due to the lack of benchmark
datasets that contain sufficient numbers of known true
positive and true negative expressed genes. Studies have
verified the expression of detected genes using experimen-
tal techniques like RT-PCR [3,4]. However, though RT-
PCR verifies the prediction success of a subset of true pos-
itives, it provides no indication of the number of true pos-
itives or negatives falsely predicted.

Several studies have examined feature selection by inves-
tigating the consistency between gene lists from small
subsets of samples and those from the full dataset [5], or
using a bootstrap method to generate simulated datasets
from real datasets [6]. This approach is limited in that it
assumes that gene lists generated on the full dataset are
correct. A number of studies have used simulated data
where the truly regulated genes are known [7-10].
Although simulated data sidesteps many problems, it is
unclear whether these simulated datasets realistically
reflect the noise inherent in real microarray data. To
address these issues, Choe et al (2005) [11] generated
binary (two class) microarray dataset with artificial cRNA
samples which contain known quantities of "spike in" tar-
gets, of which approximately one third were spiked-in dif-
ferentially. The differentially spike-in targets provided
genes with known differentially "expression" ranging
from 1.2 – 4-fold between the two classes [16]. These data
provide a substantial resource, but contain only six sam-
ples. It would be difficult for these 6 cases to represent the
complete biological and technical noise inherent in a typ-
ical microarray experiment. Due to these limitations, in
this study, we apply feature selection methods to 9 real
binary (two class) microarray datasets. These datasets
include the well-known publicly available colon [12],
lymphoma [13] and leukaemia datasets [14,15]. We
applied 10 commonly used feature selection methods to
these datasets.

The gene lists produced were evaluated using two criteria.
The first was the similarity in content between gene lists
derived using the different methods. The second was the
effectiveness of each gene list to form a gene classifier
which could predict the class of a test sample. In using
classification to rank feature selection methods, we are
assuming that a better gene list should discriminate
classes in the data more effectively. A better gene list
should provide better input information which will pro-
duce a more effective classifier. Therefore it is possible to
train a classification model using a particular set of genes,
and test how well this model discriminates between
classes when applied to a separate blind test dataset. The
test dataset can not be used for feature selection or classi-
fier training. The prediction strength of the model is a
measure of the power of the input gene list. Therefore it is
possible to rank gene lists and assesses the performance
feature selection methods.

We also examine the impact that a reduction in sample
number has on the performance of feature selection meth-
ods. The problem of too few cases is a considerable prac-
tical obstacle faced in most microarray data analyses.
Typically, the number of samples in a microarray study is
limited by cost and/or the availability of sufficient biolog-
ical material. We make recommendations of feature selec-
tion approaches which are most suited to different data
structures.

Results
Similarity of gene lists
We assessed the overlap between gene lists produced by
different feature selection methods. The 10 feature selec-
tion methods were applied to the full dataset, 50 percent
of samples in the dataset, and to subsets of size 15, 10 and
5 samples per class. To limit sampling bias sample subsets
were randomly selected 10 times. Ranked lists of differen-
tially expressed genes were produced using each of the 11
feature selection approaches (10 methods and random).
We examined the top 50, 100 and 200 mostly highly
ranked genes and recorded the proportion of genes that
were different between gene lists. Results were obtained
for all 9 datasets (Table 1). A comparison of the overlap
between these ranked gene lists are shown as dendro-
grams in figure 2.

The clusters of methods were consistent when gene lists of
the top genes 50, 100, or 200 were compared. Figure 2
shows representative dendrograms comparing the overlap
of the 100 most highly ranked genes averaged over all 9
datasets. The individual dendrograms followed by their
corresponding percentage matices, for each of the data-
sets, can be found in additional files 1, 2, 3, 4. Interest-
ingly, only 21.6% of the top 100 genes are present in all
10 gene lists when the full datasets are examined (figure
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2A). The set of randomly selected genes did not cluster
with any of the 10 feature selection methods and was an
outlier.

It can be seen from the topology of the dendrograms in
figure 2 that there are two main clusters. The first cluster,
consisting of fold change methods (BGA, fold change,
rank products) had ~58% identical gene lists. The second
cluster contained two subgroups. Gene lists in first sub-
group were obtained using the Welch t-statistics methods
(Welch t-statistic and maxT) and SAM, and were 87.4%
identical when produced from full datasets (figure 2A).
The second subgroup consisted of ANOVA, template
matching, and the Bayesian t-statistic. ANOVA and tem-
plate matching produced gene lists which were identical
in content. Gene lists produced using the Bayesian t-statis-
tic was very similar to these with 97.2% overlap in gene
content. Although ROC falls in neither subgroup, its gene
lists shares 74.9% of genes with ANOVA, template match-
ing and the Bayesian t-statistic, and 69% identity with the
Welch t-statistic, maxT and SAM subgroup. This topology
was consistent when gene lists were produced using fea-
ture selection methods applied to 50% of the data (figure
2B).

However as the number of samples is reduced, the chal-
lenge of estimating gene variance is increased. When sam-
ple size is reduced further to 10 samples per class, the
topology of second cluster changes dramatically (figure
2C). The distance between the Welch t-statistic and maxT
is reduced (figure 2C), as there is less information availa-
ble when sample permutation is performed. There is
greater difference in gene content between gene lists pro-
duced by the two modified t-statistics (82.7% similarity)
and the other t-statistic methods (89.5% similarity).

When the sample size is reduced even further to 5 samples
per class, we observed that the overlap in genes lists
between all methods drops to only 8.6% (figure 2D). The
distinction between the modified t-statistics and the other

methods is even more apparent (figure 2D). Interestingly,
the ROC method is most affected by the reduction in sam-
ples size and appears as an outlier of the second group
when the sample size falls below 15 samples per class (fig-
ure 2C, D). In contrast, the first cluster (BGA, fold change,
rank products) was not affected to this same extent when
sample size was reduced.

These analyses show that sample size clearly affects
ranked gene lists produced by different feature selection
methods, and that different methods are more robust to a
reduction in sample size.

Gene lists as classifiers
Gene lists were assessed by comparing the success of each
gene list as a classifier (figure 1). All ranked gene lists of
length between 2 and 100 were compared. The success of
each feature selection approach is represented as an accu-
mulated RCI score (figure 3A). RCI scores were accumu-
lated over 9 different datasets using all 4 classification
methods. It is clear that all methods easily out performed
random feature selection. However random feature selec-
tion does perform better with increasing numbers of
genes.

When the datasets were split so as to have the same
number of samples per class in the training and test data-
sets (figure 3A(i)), we observed that the fold methods per-
formed weakly. Fold methods received lower
accumulated RCI values than the other methods, over the
full range of gene lists lengths (between 2 and 100 genes).
Classification performance of classifiers trained with
genes lists produced by rank products were better than
BGA and fold change but poorer than the other methods.
Performance of gene lists from ANOVA and Template
matching methods are nearly indistinguishable as shown
in figure 3A(i). This is not surprising given that these pro-
duced highly overlapping gene lists (figure 2).

Table 1: Variance Structure of the 9 datasets

Dataset Reference Classes Pooled Variance

DLBCL Shipp et al., 2002 Follicular or Germinal 0.147
Prostate Singh et al., 2002 Prostate or non-Prostate 0.182
Colon Alon et al., 1999 Tumour or Normal 0.528
Leukaemia Golub et al., 1999 ALL or AML 0.458
Myeloma Tian et al., 2003 Presence or Absence of focal 

lesions of bone
0.841

ALL.1 Chiaretti et al., 2004 B-cell or T-cell origin 0.204
ALL.2 Chiaretti et al., 2004 With or without MDR 0.221
ALL.3 Chiaretti et al., 2004 Did or did not relapse 0.178
ALL.4 Chiaretti et al., 2004 With or without t(9;22) 

chromosome translocation
0.159
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Although ANOVA and Template matching has almost
identical gene lists, the most highly ranked genes were dif-
ferent when compared to ANOVA. In particular, Template
matching had problems with the ALL.4 t(9;22) dataset
when the number of genes was below 10. The effect of the
variance structure of each of the 9 datasets assessed in fig-
ure 3A(i) is shown in figure 3B(i). Figure 3B shows the
classification success (average RCI) of gene lists from each
datatset, when the top 40 genes are used to build the clas-
sifier. Further figures are provided as additional files
showing the classification success of the gene lists for each
classifier, for each dataset, for the top 20, 40 and 80 genes
(additional files 5, 6, 7, 8, 9, 10, 11, 12, 13). The corre-
sponding classification accuracy for each classifier, for
each dataset, for the top 20, 40 and 80 genes are provided
in additional files 14, 1516, 17, 18, 19, 20, 21, 22.

The feature selection approaches that perform best on the
large sample size datasets were Area under the ROC curve
and naïve bayes (figure 3A(i)). However the performance
of naïve bayes was only marginally better then the other
methods in this training and test cross validation.

The performance of many feature selection approaches
was dependent on the variance structure of the dataset
(Table 1). It can be seen from figure 3B(i) that the datasets
that contribute most to the success of the ROC method are
the leukaemia, prostate and DLBCL datasets. The ROC
methods performance is as good as any other method in
the remaining datasets, excluding colon and myeloma.
These two datasets are the noisiest datasets with pooled
variances of 0.528 and 0.841 respectively (table 1). The
methods that performed the best on these two noisy data-
sets are the fold change methods. Interestingly, the ROC
method performs well on the leukaemia dataset that has

Experimental design used to study the classifier power of genes lists from different feature selection methodsFigure 1
Experimental design used to study the classifier power of genes lists from different feature selection methods. 
The most highly ranked genes were selected from 9 gene expression datasets using 11 feature selection approaches (10 meth-
ods and random). The power of these gene lists (of length between 2 and 100 genes) to form classifiers was assessed using four 
supervised classification methods. In each case genes were selected and classifiers trained using a training dataset. They were 
tested using training and test cross validation. The cumulative relative classifier information (RCI) score was recorded for each 
classification.
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Overlap in gene lists produced by different feature selection methodsFigure 2
Overlap in gene lists produced by different feature selection methods. Each feature selection method was applied to 
datasets containing A) all samples, B) 50% samples, C) 10 samples per class, or D) 5 samples per class. The overlap of genes 
ranked in the top 100 by each method was compared using a binary distance metric. Dendrograms show the results of average 
linkage hierarchical cluster analysis of these scores which were accumulated over all 9 datasets.
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Gene lists are input to classifiers: training and test cross validationFigure 3
Gene lists are input to classifiers: training and test cross validation. Each feature selection method was applied to 
training datasets that contained i) 50% of samples, ii) 20 samples (10 from each class) or iii) 10 samples (5 from each class), and 
the most highly ranked genes were selected to generate gene lists of length between 2 and 100 genes. The ability of these gene 
lists to form successful classifiers was evaluated. The graphs (A) show the prediction success (cumulative RCI values) of these 
when applied to all 9 datasets and evaluated using four classification tools. Note that the scale of Y-axis (cumulative RCI value) 
is different between plots. The bar plots (B) show average RCI values showing the success of the top 40 genes, selected by 10 
feature selection methods, to form classifiers which can predict the class of blind test data for each of the 9 datasets.
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the third highest pooled variance of 0.458, and the fold
methods performed poorly.

The effect of reduced numbers of samples per class
In figure 3A(i), large numbers of samples were available in
the training datasets. Such large numbers of cases are rare
in most microarray studies where replicates are frequently
limited. To examine the effect of small sample size, we
generated training datasets with fewer samples; only 15,
10 or 5 samples per class. The remainder of the data were
used as a blind test set, and the class prediction strength of
the training gene lists were assessed using the classifica-
tion methods, support vector machines [SVM, [16]], BGA
[17,18], naïve bayes classification [19], and K-nearest
neighbours [KNN, [20]]. When we investigated the train-
ing with 15 cases per class (results not shown), we found
that the results were similar to figure 3A(ii). That is, fold
change methods were still the worst, followed by the t-sta-
tistic, but there was less of a difference in the performance
between the methods in cluster 2 (dendrograms in figure
2).

As the training set size is reduced further (figures 3A(ii),
3A(iii)) to 10 or 5 samples per class, lower cumulative RCI
scores are observed when compared to figure 3A(i), indi-
cating that classifier accuracy is affected by sample size.
Given fewer samples, there is less information to deter-
mine the usefulness of each gene and there is a greater
chance of false positives in a feature selection. Also there
is a loss of classification power during the generation of
the classification models. A classification model trained
on a smaller training dataset is less likely to calculate real-
istic values for the significance of the genes.

The ranking of feature selection methods is different when
the number of samples in the training dataset is reduced.
Feature selection methods, such as Area under the ROC
curve and maxT that were suited to large numbers of sam-
ples (figure 3A(i)) have reduced performance with smaller
class sizes (figure 3A(ii), 3A(iii)). In fact, ROC is very sen-
sitive to low sample size and performs poorly compared
to the other methods when the number of samples per
class is 5 (figure 3A(iii)). This is consistent with the obser-
vation that the content of gene lists produced by the ROC
method were dramatically affected by low sample size
(figure 2D).

In contrast to the large sample size study where all t-statis-
tic methods perform comparably (figure 3A(i)), the mod-
ified t-statistic methods (SAM and empirical Bayes)
outperform the other t-statistic methods when the sample
size is reduced (figures 3A(ii)). MaxT, ANOVA and Tem-
plate Matching lose power at lower numbers of samples.
This maybe attributed to the reduction in information
that can be used to calculate the variance obtained from

the reduced number of samples. This is supported by the
change in the rankings of the t-statistic methods as the
number of samples change. When the results from each of
the datasets are examined (figure 3B(ii)), the empirical
Bayes method and SAM perform comparably to other
methods in most of the datasets. But in the prostate,
colon, and ALL4 datasets, empirical Bayes method does
better then the other t-statistic methods, although in the
latter two, empirical bayes method is beaten by the fold
methods. When the two datasets with the greatest pooled
variance (colon and myeloma) are looked at, we see that
the fold change methods especially rank products do well.
The fold methods are beaten by other methods in datasets
with low variance (Table 1).

When the number of samples is reduced further to 5 sam-
ples per class (figure 3A(iii)), the gap between the modi-
fied t-statistics and the other t-statistic methods is
increased. This is consistent with the separation of these
two subgroups in figure 2D. The empiricial bayes statistic
is now ranked second, below rank products. Despite being
ranked first the rank products method only gets the high-
est RCI value in two of the datasets. This is because rank
products, and to a lesser extent the empirical bayes statis-
tic, was ranked consistently high across the datasets, while
the rank of other methods varied.

Overall the empirical bayes t-statistic was most robust. It
performed comparably well with any number of cases, but
it was outperformed by the ROC method when the
number of samples in the training dataset was large, and
the rank products method when the number of samples
was limiting or when the dataset has a high pooled vari-
ance.

Discussion
Different feature selection methods produce dissimilar
gene lists, which can produce dramatically different dis-
crimination performance when trained as gene classifiers.
The gene lists produced by the feature selection methods
can be grouped broadly according to the manner in which
they treat gene variance.

The BGA, fold change and rank products cluster consists
of methods that do not model the variance when ranking
genes. Although fold change continues to be widely uti-
lised in many studies, this early approach to ranking dif-
ferentially expressed genes is not optimal. This is because
fold change and BGA do not control the variance and so
are susceptible to outliers. This is different to rank prod-
ucts, which assumes constant variance across all samples.
Rank products compared the product of the ranks of genes
in a class with the product of the ranks of genes in the sec-
ond class. For each gene in the dataset, rank products sorts
the genes according to the likelihood of observing their
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(page number not for citation purposes)



BMC Bioinformatics 2006, 7:359 http://www.biomedcentral.com/1471-2105/7/359
ranked positions on the lists of differentially expressed
genes just by chance. Our study has shown that this
method performs well with limited numbers of samples
and with noisy datasets which agrees with a recent study
[21].

In this study the t-statistic methods performed relatively
poorly. Given the high levels of noise in microarray data,
together with the low samples sizes, computing a t-statis-
tic can be problematic, because the variance estimate
(denominator of the t-statistic) can be skewed by the
genes which have a low variance. Due to the large num-
bers of genes studied in microarray datasets, there will
always be some genes which have a low standard devia-
tion by chance. Thus, these genes will have a large t-statis-
tic and will be falsely predicted to be differentially
expressed.

Classifiers built using gene lists from the ROC method
outperformed all other methods when applied to large
datasets. High RCI scores were observed even when only a
few of the most highly ranked genes were examined.
These high RCI scores were maintained when the number
of genes examined was increased. It is possible to obtain
p-values using this method [22]. However our analysis
showed that ROC, like the t-statistic methods, loses power
when the number of samples is reduced. ROC ranks a
gene based on its power to discriminate between the
groups given a threshold false positive rate. This means
that it ignores the level of expression of the gene in the
two groups. Therefore as the training size decreases, the
likelihood of a gene with low variance and no biological
meaning being a good discriminator by chance increases.
Our results suggest that ROC is an unsuitable method
when the sample size is below 30 (class size of 15). This
agrees with a previous study which noted the drop in
reproducibility of results when the sample size was
reduced from n = 70 to n = 30 [6].

When the number of replicates is small, variance estima-
tion is much more challenging. We observed that gene
rankings based on most statistics were poor. At low num-
bers of samples this study finds it difficult to report any
differences between methods such as BGA and fold which
do not model the variance, and SAM which attempts to
model the variance. Equally, in data sets with high vari-
ance, fold or non-parametric methods were more power-
ful than parametric methods. We observed that gene lists
from fold change or BGA produced formed comparable or
better classifiers to those generated with gene lists from
the Welch t-statistic, ANOVA, maxT or template matching.
Small noisy datasets are very common in practise, and in
these cases rank products can be recommended.

Several modified t-statistics have been proposed to
address this problem, of which SAM [3] is arguably the
most popular. In this study SAM performed moderately
well across most analyses, except when applied to data
with low sample size, where it did not outperform the
classic fold change. SAM also performs poorly when
applied to the noisy datasets. SAM uses a moderated t-sta-
tistic, whereby a constant is added to the denominator of
the t-statistic. The addition of this constant reduces the
chance of detecting genes which have a low standard devi-
ation by chance. The constant is estimated from the sum
of the global standard error of the genes. It is reported that
the SAM algorithm favours using a large value denomina-
tor constant factor, which in turn means the t-statistic
depends more on the fold change value [11]. Therefore at
low samples sizes it may provide a less reliable estimate of
variance, which may explain why simple fold change or
non-parametric methods outperform SAM on these types
of data. This has also been reported in a number of recent
studies [8-10,23].

Although both SAM and the empirical bayes method are
moderated t-statistics, the empirical bayes method pro-
vides a more complex model of the gene variance. The
gene standard error is estimated as a representative value
of the variance of the genes at the same level of expression
as the gene of interest [24]. We report that in training sets
with a large number of cases, the empirical bayes method
performed comparably with ANOVA and template match-
ing, although the genes selected by these methods varied
slightly. Importantly, unlike most other methods the
empirical bayes t-statistic proved equally robust with low
numbers of cases. We observed that when the number of
cases was small, gene rankings based on the empirical
bayes t-statistic proved to be much more reliable than
other methods examined in this study. The Bayesian sta-
tistic also provides p-values and, has the advantage that it
can be expanded to deal with datasets that have more then
two classes.

Conclusion
This study used an indirect method of testing the feature
selection methods by using classification models. Using
this method we have demonstrated that the empirical
bayes statistic, the Area under the ROC curve method and
rank products are accurate ways to identify differentially
regulated genes in a microarray dataset and that these can
produce robust classifiers. The empirical bayes statistic
was the most robust method across all sample sizes. When
dealing with datasets that have a low pooled variance that
contain 15 or more samples, the ROC method is proved
to be the most accurate. For datasets that have a high
pooled variance or a low number of samples, the rank
products method proved useful.
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Methods
All computations were performed using the statistical lan-
guage R and Bioconductor [25]. The R code is available on
request.

Datasets
We applied feature selection methods to 9 datasets (figure
1). Each dataset is publicly available and data were down-
loaded from microarray repositories or from the authors'
web sites. The post-processed datasets used in this study
are available online [26].

• DLBCL
The diffuse large B-cell lymphoma (DLBCL) dataset con-
tains 77 samples, 58 of which came from DLBCL patients
and 19 follicular lymphoma from a related germinal cen-
tre B-cell lymphoma, [13]. The gene expression data were
obtained on Affymetrix human 6800 oligonucleotide
arrays. The data are available from the Broad Institute
website [27].

• Prostate
102 samples, 50 of which were non-tumor prostate sam-
ples and 52 of which were prostate tumours [28]. The
experiments were run on Affymetrix human 95Av2 arrays
and the data are available from the Broad Institute website
[29].

• Colon
The colon cancer dataset consists of 62 samples, 40
tumour samples and 22 normal controls [12]. The gene
expression data were obtained on Affymetrix human 6000
arrays and the data are available in the colonCA library in
Bioconductor [30].

• Leukaemia
Gene expression profiles of two types of leukaemia [15].
Samples were derived from 47 patients with acute lym-
phoblastic leukaemia (ALL) and 25 patients with acute
myeloblastic leukaemia. Data were generated on Affyme-
trix human 6800 arrays and are available in the golubEsets
library in Bioconductor [30].

• Myeloma
Multiple myeloma samples from Tian et al [31] were split
into two groups based on the presence or absence of focal
lesions of bone. There were 36 patients without and 137
patients with bone lytic lesions. The original paper also
used a group of 45 controls. The data were generated using
Affymetrix human U95A and were downloaded from
Gene Expression Omnibus [32] (accession number:
GDS531).

• ALL
Gene expression profiles of 128 different individuals with
acute lymphoblastic leukaemia [14]. From the annotation
available, the samples in this dataset could be split in dif-
ferent ways. We examined four of these splits. These were
ALL gene expression profiles with

• ALL.1. B-cell (n = 95) or T-cell (n = 33) origin

• ALL.2. With (n = 24) and without (n = 101) multidrug
resistance (MDR)

• ALL.3. Patients that did (n = 65) and did not relapse (n
= 35)

• ALL.4. From patients with (n = 26) and without (n = 67)
the t(9;22) chromosome translocation

The data were generated using Affymetrix human 95Av2
arrays and are available in the ALL library in Bioconductor
[30].

Pre-processing of data
The leukaemia, colon and ALL datasets were available
from the Bioconductor libraries as mentioned above. The
colon data were further processed using quantile normal-
isation. The leukaemia data was processed by making the
min expression value 100 and the max expression value
16000, The data was then logged (base 2). The data for the
other datasets were downloaded as raw data files (.cel
files) and gene expression values were called using the
robust multichip average method [RMA, [33]] and data
were quantile normalised using the Bioconductor pack-
age, affy. The pooled variance of the datasets were then
calculated and the results are shown in table 1.

Implementation of feature selection methods
10 feature selection methods were applied to each of the
datasets (figure 1). These methods were used to rank the
genes. We ignored cut-off values such as p-values, that give
a probability of a score compared to a null hypothesis.

• Fold change
Fold change is a simple ad hoc method. It is often the first
method used in microarray analysis. The expression val-
ues for each probe are averaged across the samples in each
group and the ratio of these averaged values are calcu-
lated. The genes are then ranked by this ratio.

• ANOVA (t-statistic)
The formula for the t-statistic is the difference in the
means over the standard deviation. For 2 groups, this is
the equivalent of a 1 way analysis of variance. [34]
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• Welch t-statistic
The t-statistic assumes that there is an equal variance
across each of the groups. This is not always the case, the
welch t-statistic does not assume equal variance. For each
gene g, the test statistic is

, where  and  denote

the sample average intensities in groups A and B, and S2
gA

and S2
gB denote the sample variances for each group.

• MaxT
MaxT was computed using the mt.MaxT function in the
Multtest package for Bioconductor in R [35]. It determines
the family-wise error rate-adjusted P values using the
Welch t-statistic. To do this the class labels are permuted,
and the Welch t-statistic for each gene is calculated. The
maximum Welch t-statistic is recorded for 10,000 random
permutations, the distribution of maximum t-statistics is
compared with observed values for the statistic, and the P
for each gene is estimated as the proportion of the maxi-
mum permutation-based t-statistics that are greater than
the observed value.

• SAM
When using the t-statistic it is often the case that small per-
gene variances can make small fold-changes statistically
significant. Tusher et al. 2001 [3] proposed the SAM (Sig-
nificance Analysis of Microarrays) method to deal with
this problem.

It works by adding a small "fudge factor" to the denomi-
nator of the test statistic. This fudge factor is calculated
from the distribution of gene-specific standard errors.
Thereby eliminating the small variances. SAM was applied
using the siggenes package for Bioconductor in R

• Empirical bayes statistic
The Empiricial bayes statistic [24] is described as equiva-
lent to shrinkage of the estimated sample variances
towards a pooled estimate, resulting in far more stable
inference when the number of arrays is small. It returns
the log-odds that a gene is differntialy expressed. The
higher the score, the more significant the result. The
empirical bayes statistic was applied using the the LIMMA
package for Bioconductor in R.

• Template matching
This is a simple and flexible method to investigate micro-
array data. A template, or profile, of gene expression, is
defined by the experimenter. Genes which match the tem-
plate, as measured using correlation, are identified as bio-
logically interesting. It has the advantage that it can be

used with any number of groups and templates. This
means it can be used to find specific biological expression
profiles that are of interest to the researcher in multigroup
microarray datasets. Template matching were executed as
in Pavlidis and Noble [36].

• Area under the Roc curve
ROC analysis displays the relationship between the pro-
portion of true positives (sensitivity) and false positives
(1-specificity) resulting from each possible decision
threshold value in a two-class classification problem.
Where classification has occurred, the graph of the output
from the ROC analysis forms a curve. The area under this
curve can be used as a measure of the accuracy of the test.

This method can be applied to the expression values of a
gene belonging to a number of samples belonging to two
groups. The area under the ROC curve provides an esti-
mate of the probability that a gene is regulated between
the two groups [37].

This method was performed using functions from the
ROC library.

• Between Group Analysis (BGA)
BGA is a multiple discriminant analysis approach, which
uses a dimension reduction technique such as corre-
spondence analysis (COA) or principal component anal-
ysis[18]. Instead of dimension reduction of the individual
samples as is done in these classical ordination tech-
niques, BGA ordinates the groups. It finds the eigenvec-
tors or axes that discriminate the groups so as to maximise
the between group variances. When used with COA, BGA
also ordinates the genes, in a way that the most discrimi-
nating genes are at the end of the axes. In this way the
genes associated with each group are established. This
analysis was performed using the ade4 library in R.

• Rank Product
The Rank Products method was developed for identifying
differentially expressed genes in cDNA expression data
[21,23]. It is based on the argument that a gene in an
experiment examining n genes in k replicates, has a prob-
ability of being ranked first (rank 1) of 1/nk if the lists were
entirely random. Therefore, it is unlikely for a single gene
to be in the top position in all replicates if this gene was
not differentially expressed. More generally, for each gene
g in k replicates i, each examining ni genes, one can calcu-
late the corresponding combined probability as a rank
product

where ri,g
up is the position of gene g in the list of genes in

the ith replicate sorted by decreasing fold change, i.e. rup =

t
X X

S N S N
g

gA gB

gA A gB B
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1 for the most strongly upregulated gene, etc. The genes
can then be sorted according to the likelihood of observ-
ing their RP value at or above a certain position on the list.

In addition to these methods, a set of random genes were
selected from each dataset. This gave a total of 11 meth-
ods, which were compared. R scripts to perform these
methods are available on request.

Investigating the overlap in content of feature lists
Each of the 11 feature selection methods were applied to
each of the 9 datasets. Each method was applied to all data
samples (cases) and to four subsets of each dataset which
contained fewer samples. These subsets were 50 percent of
the samples, and datasets of 5, 10, or 15 samples per class.
10 random selections of each of these four sample subsets
were generated. The overlap of features (genes) in the top
50, 100 and 200 highly ranked genes were counted using
the binary distance metric as implemented in the stats
library in R. This gives the proportion of genes between
two lists that are different, ignoring genes that are absent
from both. In order to visualise these results, hierarchical
clustering was performed using UPGMA/average linkage
clustering [38].

Class prediction success of each feature list
Datasets were divided into training and test datasets. Fea-
ture selection and training of classifiers was performed on
the training dataset only. The success of each gene list as a
classifier was measured using the test dataset. Importantly
test datasets were never used in either feature selection or
classifier training.

To compare the success of each gene list as a classifier, a
classification method was required. It is known that differ-
ent types of classifiers can respond differently to the same
input data. Therefore it was decided to use a number of
classification tools: between group analysis [BGA,
[17,18]], naïve bayes classification [19], support vector
machines [SVM, [16]] and K-nearest neighbours [KNN,
[20]].

BGA is a multiple discriminant analysis approach, which
uses a dimension reduction technique such as corre-
spondence analysis (COA) or principal component anal-
ysis. Instead of dimension reduction of the individual
samples as is done in these classical ordination tech-
niques, BGA ordinates the groups. It finds the eigenvec-
tors that separate the groups so as to maximise the
between group variances. New samples can then be pro-
jected on to these eigenvectors and classified according to
their proximity to the centroids of the groups. In this
study BGA was implemented using COA. BGA is available
in the R library ade4 [17], and its extension package made4
[39] in Bioconductor.

Naïve bayes simplifies the classification process using the
assumption that all features are independent given the
class. Although it is generally agreed that this is a poor
assumption, the technique has proved robust over a wide
range of classification problems. The algorithm estimates
the conditional probabilities of an observation belonging
to each class by using the joint probabilities of sample
observations (genes) and classes. Naïve bayes was imple-
mented using the limma library [24] in Bioconductor.

SVM has been applied to the classification of microarray
data in a number of studies [40,41]. Binary SVM's look for
the maximally separating hyperplane between the closest
points of the two classes. In this study we used a linear ker-
nel, and SVM was applied using the e1071 library in R.

KNN has been widely used in microarray classification
[28,42,43]. When KNN is presented with a test case, it uses
Euclidean distances to find a number, K of the nearest
cases from the training set which have known classes. It
then applies a weight to these K nearest cases that is
inversely proportional to the distance from the test sam-
ple. The predicted class of the sample is then determined
by taking the sum of the K weighted samples. KNN with K
= 11, was applied using the class library in R.

Cross validation
In each cross validation, the 10 feature selection methods
were applied to the data to produce 10 lists of ranked
genes. The top n genes were selected. The number of
genes, n, ranged from 2 to 100 inclusive. Thus 990 gene
lists were produced from each training dataset. These gene
selections were used to train classifier models.

The cross-validation of classifiers was performed using full
training and test cross-validation. For 50% sample analy-
sis (figure 3A), data were randomly split into two equal
groups. The first group was used as a training dataset for
feature selection and classifier training. In training and
test cross-validation, all four classification methods, BGA,
SVM, KNN and naïve bayes classification were applied.
The prediction success of each model was assessed using
the blind test dataset. Importantly full cross-validation
was performed; the test data were not used for feature
selection of gene lists or training of classifiers. The whole
process was repeated 10 times to ensure there was no sam-
pling bias in the training or test datasets.

Examining the effect of sample size
We also examined the efficiency of training datasets with
reduced numbers of samples (figure 3B–C). To do this, we
created training datasets with only 5, 10 and 15 samples
per class. The remainder of the data were used as the blind
test set. Again the power of gene lists (length n = 2:100) to
classify samples in the blind test dataset were recorded.
Page 11 of 16
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The whole process was repeated 10 times as in the first
training and test cross-validation. All four classification
methods, BGA, SVM, KNN and naïve bayes classification,
were applied to gene lists from each of the 9 datasets.

The Relative Classifier Information metric
The numbers of correctly predicted cases were counted for
each cross validation. Although many studies present
these results in terms of the percentage accuracy, this
unfortunately does not take into account bias in the
number of samples in each class in the dataset being
tested. For example, if a dataset with a 100 samples con-
tained 95 normal and 5 diseased, a classifier where all the
samples were predicted to be normal would be 95% accu-
rate. This is misleading. Therefore we present the number
of correctly classified samples using the relative classifier
information metric [RCI, [44]]. The RCI metric is an
entropy-based measure that corrects for differences in
prior probabilities caused by unequal class size. By taking
into account this prior probability, a better measure of
classification power is obtained [44].

Given a classifier's performance on a test set, the RCI
measure may be derived as follows; Let Q be a confusion
matrix, so that qij is the number of times an input (I)
whose actual label is Ci is labelled Cj. Ci are the true labels
and Cj are the labels predicted by a classification model.
The probability that I has a true label Ci is given by:

If an external user was to have knowledge of the distribu-
tion of the test-set sample over the classes, they would
have some knowledge of the chance of a random sample
belonging to each of the classes. Therefore this distribu-
tion may be used as a measure of the difficulty of a deci-
sion problem. The entropy of the data set before
classification can be used to measure the uncertainty asso-
ciated with a test set before a classification model has been
applied and is calculated as:

The probability that the classifier output (O) will predict
a sample as belonging to class Cj is;

The probability that a sample belonging to Ci is labelled as
Cj by the classifier is;

Therefore the uncertainty for a sample after classification
has occurred is;

And the overall uncertainty after classification is;

The reduction in uncertainty due to the classifier is used as
the RCI score:

RCI score = Hd - Ho

A higher RCI score indicates an improvement in classifica-
tion power. If a dataset has an equal number of samples
in each class, the RCI will be 1 if all samples are predicted
with perfect accuracy. If the class sizes are unequal the
maximum score is <1. In this study, all classification
results are presented using the RCI metric. The RCI values
are summed across classifiers for each dataset, and thus
results are shown as cumulative RCI scores. The above cal-
culations were performed using an R script.
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Additional File 1
Overlap in gene lists produced by different feature selection methods 
where n = 5 samples per class. Each feature selection method was applied 
to datasets containing 5 samples per class. The overlap of genes ranked in 
the top 100 by each method was compared using a binary distance metric. 
Dendrograms show the results of average linkage hierarchical cluster 
analysis of these scores for each dataset. Percentage matricies below each 
of the dendrograms show the percentage similarity between each of the 
feature selection methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S1.pdf]
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Additional File 2
Overlap in gene lists produced by different feature selection methods 
where n = 10 samples per class. Each feature selection method was 
applied to datasets containing 10 samples per class. The overlap of genes 
ranked in the top 100 by each method was compared using a binary dis-
tance metric. Dendrograms show the results of average linkage hierarchi-
cal cluster analysis of these scores for each dataset. Percentage matricies 
below each of the dendrograms show the percentage similarity between 
each of the feature selection methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S2.pdf]

Additional File 3
Overlap in gene lists produced by different feature selection methods 
where n = 50% of the samples per class. Each feature selection method 
was applied to datasets containing 50% of the samples per class. The over-
lap of genes ranked in the top 100 by each method was compared using a 
binary distance metric. Dendrograms show the results of average linkage 
hierarchical cluster analysis of these scores for each dataset. Percentage 
matricies below each of the dendrograms show the percentage similarity 
between each of the feature selection methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S3.pdf]

Additional File 4
Overlap in gene lists produced by different feature selection methods 
when applied to each dataset. Each feature selection method was applied 
to each of the full datasets. The overlap of genes ranked in the top 100 by 
each method was compared using a binary distance metric. Dendrograms 
show the results of average linkage hierarchical cluster analysis of these 
scores for each dataset. Percentage matricies below each of the dendro-
grams show the percentage similarity between each of the feature selection 
methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S4.pdf]

Additional File 5
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 80 genes are used and n = 5 samples 
per class. RCI values showing the success of the top 80 genes, selected by 
the feature selection methods, to form classifiers which can predict the 
class of blind test data for each of the 9 datasets. These figures show the 
results for each of the classification methods when a reduced training set 
of 10 (5 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S5.pdf]

Additional File 6
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 80 genes are used and n = 10 samples 
per class. RCI values showing the success of the top 80 genes, selected by 
the feature selection methods, to form classifiers which can predict the 
class of blind test data for each of the 9 datasets. These figures show the 
results for each of the classification methods when a reduced training set 
of 20 (10 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S6.pdf]

Additional File 7
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 80 genes are used and n = 50% of 
the samples per class. RCI values showing the success of the top 80 genes, 
selected by the feature selection methods, to form classifiers which can pre-
dict the class of blind test data for each of the 9 datasets. These figures 
show the results for each of the classification methods when a datasets split 
equally into training and test sets is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S7.pdf]

Additional File 8
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 40 genes are used and n = 5 samples 
per class. RCI values showing the success of the top 40 genes, selected by 
the feature selection methods, to form classifiers which can predict the 
class of blind test data for each of the 9 datasets. These figures show the 
results for each of the classification methods when a reduced training set 
of 10 (5 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S8.pdf]

Additional File 9
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 40 genes are used and n = 10 samples 
per class. RCI values showing the success of the top 40 genes, selected by 
the feature selection methods, to form classifiers which can predict the 
class of blind test data for each of the 9 datasets. These figures show the 
results for each of the classification methods when a reduced training set 
of 20 (10 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S9.pdf]

Additional File 10
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 40 genes are used and n = 50% of 
the samples per class. RCI values showing the success of the top 40 genes, 
selected by the feature selection methods, to form classifiers which can pre-
dict the class of blind test data for each of the 9 datasets. These figures 
show the results for each of the classification methods when a datasets split 
equally into training and test sets is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S10.pdf]

Additional File 11
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 20 genes are used and n = 5 samples 
per class. RCI values showing the success of the top 20 genes, selected by 
the feature selection methods, to form classifiers which can predict the 
class of blind test data for each of the 9 datasets. These figures show the 
results for each of the classification methods when a reduced training set 
of 10 (5 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S11.pdf]
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Additional File 12
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 20 genes are used and n = 10 samples 
per class. RCI values showing the success of the top 20 genes, selected by 
the feature selection methods, to form classifiers which can predict the 
class of blind test data for each of the 9 datasets. These figures show the 
results for each of the classification methods when a reduced training set 
of 20 (10 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S12.pdf]

Additional File 13
The RCI scores for each of the individual datasets and individual clas-
sification methods where the top 20 genes are used and n = 50% of 
the samples per class. RCI values showing the success of the top 20 genes, 
selected by the feature selection methods, to form classifiers which can pre-
dict the class of blind test data for each of the 9 datasets. These figures 
show the results for each of the classification methods when a datasets split 
equally into training and test sets is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S13.pdf]

Additional File 14
The percentage accuracy scores for each of the individual datasets and 
individual classification methods where the top 80 genes are used and 
n = 5 samples per class. The percentage accuracy of the top 80 genes, 
selected by the feature selection methods, to form classifiers which can pre-
dict the class of blind test data for each of the 9 datasets. These figures 
show the results for each of the classification methods when a reduced 
training set of 10 (5 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S14.pdf]

Additional File 15
The percentage accuracy scores for each of the individual datasets and 
individual classification methods where the top 80 genes are used and 
n = 10 samples per class. The percentage accuracy of the top 80 genes, 
selected by the feature selection methods, to form classifiers which can pre-
dict the class of blind test data for each of the 9 datasets. These figures 
show the results for each of the classification methods when a reduced 
training set of 20 (10 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S15.pdf]

Additional File 16
The percentage accuracy scores for each of the individual datasets and 
individual classification methods where the top 80 genes are used and 
n = 50% of the samples per class. The percentage accuracy of the top 80 
genes, selected by the feature selection methods, to form classifiers which 
can predict the class of blind test data for each of the 9 datasets. These fig-
ures show the results for each of the classification methods when a datasets 
split equally into training and test sets is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-359-S16.pdf]

Additional File 17
The percentage accuracy scores for each of the individual datasets and 
individual classification methods where the top 40 genes are used and 
n = 5 samples per class. The percentage accuracy of the top 40 genes, 
selected by the feature selection methods, to form classifiers which can pre-
dict the class of blind test data for each of the 9 datasets. These figures 
show the results for each of the classification methods when a reduced 
training set of 10 (5 from each class) is used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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