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ABSTRACT

Motivation: We describe an extension of the pathway-based

enrichment approach for analyzing microarray data via a robust

test for transcriptional variance. The use of a variance test is

intended to identify additional patterns of transcriptional regulation in

which many genes in a pathway are up- and down-regulated. Such

patterns may be indicative of the reciprocal regulation of pathway

activators and inhibitors or of the differential regulation of separate

biological sub-processes and should extend the number of

detectable patterns of transcriptional modulation.

Results: We validated this new statistical approach on a microarray

experiment that captures the temporal transcriptional profile of

muscle differentiation in mouse C2C12 cells. Comparisons of the

transcriptional state of myoblasts and differentiated myotubes via a

robust variance test implicated several novel pathways in muscle

cell differentiation previously overlooked by a standard enrichment

analysis. Specifically, pathways involved in cell structure, calcium-

mediated signaling and muscle-specific signaling were identified as

differentially modulated based on their increased transcriptional

variance. These biologically relevant results validate this approach

and demonstrate the flexible nature of pathway-based methods of

data analysis.

Availability: The software is available as Supplementary Material.

Contact: joseph.szustakowski@novartis.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray experiments have quickly become staples of

twenty-first-century biology. Nevertheless, the analysis of

these experiments and extraction of novel biological insights

from their results remain an open problem. One of the most

common questions biologists seek to address via microarray

experiments is ‘what pathways or processes are modulated in

my system?’ Recently several methods have been developed that

make use of the currently available repositories of biological

pathways to analyze microarray and other high-throughput

experiments (for two excellent recent reviews, see Curtis et al.,

2005; Dopazo, 2006). Although details vary by method, these

approaches use various statistical tests and a priori biological

knowledge, typically in the form of pathways, gene sets or

ontological categorizations, to extract additional signal from

these experiments. Such pathway-based methods identify

groups of functionally related genes that behave in a

coordinated fashion across multiple conditions. Application

of this knowledge can be done via direct projection onto

the microarray results (Mootha et al., 2003) or by examining

lists of differentially regulated genes for enrichment of genes

from specific pathways (Beissbarth and Speed, 2004; Doniger

et al., 2003; Draghici et al., 2003; Khatri et al., 2004; Tavazoie

et al., 1999).
Pathway-based analyses enjoy several advantages over

more traditional ‘one-gene-at-a-time’ methods; taken together,

the two approaches offer complementary views of an experi-

ment. By leveraging a priori knowledge, pathway-based

methods yield more interpretable, hypothesis-based results.

Moreover, these methods use statistical tests which are capable

of detecting weak signals that would otherwise be missed.

As an example, let us consider the gene set enrichment analysis

(GSEA) described by Mootha et al. (2003) and subsequently

extended elsewhere (see, for example, Al-Shahrour et al., 2005;

Goeman et al., 2005; Kim and Volsky, 2005; Kong et al., 2006;

Szustakowski et al., 2006; Tian et al., 2005; Tomfohr et al.,

2005; Zahn et al., 2006). The GSEA framework examines all

data points in an integrative approach that detects consistent

differences between genes in a pathway and all other genes.

By comparing the genes of interest to an assumed background

distribution (i.e. all of the other genes on a microarray chip),

this approach offers greatly enhanced statistical power. This

‘standard’ enrichment approach has proven effective at

identifying pathways that are coordinately regulated even

when the changes in expression at the transcript level are

modest (Mootha et al., 2003). Recent extensions of this

framework have sought to identify gene sets with a variety of

desirable properties. Tomfohr et al. (2005) apply a singular

value decomposition to identify informative ‘meta-genes’ in

the data. Work by Kong et al. (2006) applies multivariate*To whom correspondence should be addressed.
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statistical tests to identify differentially regulated gene sets.

Another promising approach attempts to correlate patient

survival times with gene sets (Goeman et al., 2005).
Pathway-based methods share a common insight, that

pathways can be modulated by modest (i.e. not statistically

significant) but consistent transcriptional changes across many

of their constituent genes. This insight has provided a sensitive

approach that complements the traditional ‘one-gene-at-a-time’

approach for analyzing biological data. This insight however

applies to only one mode of transcriptional regulation and

assumes that available pathway data are accurate and conform

to this model. Many pathways can be modulated in more

complex and subtle ways than coordinated transcriptional up-

or down-regulation. As an example, consider the reciprocal

regulation of pathway activators and inhibitors. If a particular

pathway is activated, it is reasonable to expect to observe

transcriptional up-regulation of that pathway’s activators and a

concomitant down-regulation of its inhibitors. We were there-

fore motivated to design additional analysis methods that could

recognize more complex transcriptional patterns.
Here, we describe the application of a variance test to expand

the repertoire of detectable transcriptional responses.

Specifically, we have extended the GSEA framework to include

the Levene test for homogeneity of variance as modified by

Brown and Forsythe (LBF) (Conover et al., 1981). The LBF

test operates on median-transformed data (see Methods for

details) and has been shown to be robust and powerful relative

to other variance tests (Conover et al., 1981). The LBF test is

intended to complement the standard location-based enrich-

ment analysis. By comparing the transcriptional variance of a

pathway to the background variance observed in the experi-

ment, we will be able to detect two additional patterns:

pathways with increased variance compared to background,

and pathways with decreased variance. Pathways with

increased variance are likely to contain many genes that are

substantially up- and down-regulated. Such a pattern may be

indicative of the reciprocal regulation of pathway activators

and inhibitors. When the numbers of up- and down-regulated

genes are balanced, the overall expression pattern of the gene

set would remain neutral, and the gene set would be undetected

by the standard enrichment analysis. Increased variance may

also be indicative of the differential regulation of distinct sub-

processes that are described in larger gene sets. In contrast,

pathways with decreased variance do not necessarily suggest a

particular form of modulation. Pathways with decreased

variance across a number of conditions may be under tight

transcriptional regulation and consequently may be detected

more often by standard enrichment analyses as well. In this

article, we describe a detailed comparison of the LBF test

relative to other statistical tests and demonstrate that it can

reveal additional biological interpretations missed by other

tests.

2 METHODS

GSEA uses microarray experiment measurements for a system under

two different conditions as input. For these analyses, we sorted genes

based on their relative expression ri between condition1 and condition2:

ri¼�i, 1/�i, 2, where mi, j is the average expression value for gene i under

condition j. Typical comparisons would include diseased versus normal

and control versus treated samples.

Each available gene set is projected on to the data one-at-a-time. This

projection of a priori biological knowledge divides the genes into two

groups: those genes known to be involved in a specific pathway k (with

corresponding expression ratios Rk) and all other genes (with expression

ratios ~Rk). The genes not in a specific pathway serve as a background

distribution that reflects the overall biological and technical noise in the

data. By applying tests to the expression levels of the genes in these two

distributions, one can determine if the behavior of genes in a pathway

presents a signal that is detectable with some confidence above the

background noise inherent in the experiment. More formally, one can

test the null hypothesis S Rkð Þ ¼ S ~Rk

� �
, where S is a test statistic chosen

to capture a transcriptional signal of interest. This partitioning

increases the statistical power of any test used. Whereas a ‘one-gene-

at-a-time’ analysis has statistical power limited by the number of

available replicates (typically n� 5), partitioning the data in this fashion

effectively integrates the behavior of all of the genes in a pathway

(typically 105n5500) and exploits the large number of total

measurements made on each chip as a background distribution

(typically n410 000). This overall increase in statistical power makes

pathway-based analyses both more sensitive and specific than other

‘one-gene-at-a-time’ methods.

For this article, we applied three separate statistical tests to the

partitioned data: the Wilcoxon ranked sum test, the LBF test and the

Kolmogorov Smirnov (KS) test. The Wilcoxon test (Siegal, 1956)

represents the standard location-based enrichment analysis and is

intended to identify those gene sets with coordinate differential

expression. The KS test (Siegal, 1956) is an omnibus test that should

be sensitive to a host of distributional differences including (but not

limited to) location and spread. The KS test is used here as a reference

point to estimate the overall difference in expression patterns for each

gene set compared to background. The LBF test is used to locate gene

sets with unusually high or low variance compared to background and

is applied to log(ri) values. The LBF test first transforms the data

according to Zij ¼ Xij �median Xið Þ
�� ��, where Xij corresponds to the jth

data point from the ith sample. A one-way analysis of variance is then

applied to the Zij values to test for homogeneity of variance. We chose

the LBF test over other tests because it provides cleaner results with

fewer false positives and it maintains information about the relative

magnitudes of the variances tested (see Supplementary Material).

Here, 535 gene sets were used in this analysis, culled from several

sources: KEGG (n¼ 103) (Kanehisa et al., 2006), Celera/Panther

ontology (n¼ 204), Celera public pathways (n¼ 56), Jubilant/Pathart

(n¼ 171) and expert curation (n¼ 1). (Links to these and other pathway

repositories are provided in Supplementary Material.) We applied

the false discovery rate (FDR) q-value multiple testing correction

(Storey and Tibshirani, 2003a,b) to all P-value outputs by a specific

statistical test to account for the large number of gene sets tested against

the data.

We analyzed gene transcription microarray data that captured the

differential expression during the temporal progression of muscle stem

cell differentiation (Szustakowski et al., 2006). The mouse C2C12

myoblast cell line served as a model of late stage (terminal) myogenesis,

such that induction of these proliferating mononucleate cells caused

cell-cycle arrest and cell fusion to form myotubes that physically

contracted and displayed characteristic molecular features of skeletal

myocytes.

C2C12 mouse skeletal myoblasts were cultured in DMEM high

glucose with 10% FBS and 1% penicillin/streptomycin (Gibco), and

maintained at 37�C and 5% CO2. Differentiation of C2C12 myoblasts

into myotubes was achieved by culturing cells in media containing

reduced serum concentration (2% v/v) for up to 5 days with media

changes every 2 days. C2C12 cell RNA was harvested using the RNeasy
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Midiprep kit (Qiagen) following the manufacturer’s instructions. Cells

were cultured in 6-well plates and a time course of differentiation was

performed. Induction of differentiation was initiated at time 0, when

cells were confluent, by reducing the serum concentration in the wells to

3% v/v. Cells were lysed for RNA preparation at Days� 1, 0, 0.25, 1, 2,

3, 4 and 5 post-differentiation. RNA was analyzed using the Affymetrix

mouse whole genome microarray, MOE430 PLUS 2.0. Each time point

was performed in triplicate, from independent experiments.

Microarray data were normalized using the RMA package (Irizarry

et al., 2003) with default settings. Normalized values were returned to a

linear scale via base-2 exponentiation and scaled to a 2% trimmed mean

of 150. Probesets with expression values less than 100 on more than

75% of the chips were discarded as low- or non-expressed. Pathway

analyses were performed to compare the transcriptional profiles of

C2C12 cells at Day� 1 (myoblasts) and Day 5 (myotubes) of this

experiment. An implementation of the methods described here are

available as Supplementary Material.

3 RESULTS

Here, 95 of the 535 gene sets were deemed significantly

modulated by at least one of the three tests at a FDR q-value

threshold of 1E� 3 (see Supplementary Table 1 for results for

all 535 gene sets). A graphical overview of these gene sets is

presented in Figure 1. The Wilcoxon and LBF tests return

almost identical number of gene sets (n¼ 50, n¼ 48, respec-

tively), whereas the omnibus KS test appears to capture the

most variation in the data (n¼ 61). When considering all

three tests, we observe that the LBF test returns the largest

number of unique results (n¼ 29) followed by the KS test

(n¼ 9) and Wilcoxon test (n¼ 4). The large intersection of

Wilcoxon and KS results (n¼ 45, 90% of Wilcoxon results,

74% of KS results) suggests they are largely capturing similar

patterns in the data. In contrast, the LBF test exhibits

substantially less overlap with the other tests, sharing 18 out

of 48 gene sets with the KS test (38%) and 12 of 48 gene sets

(25%) with the Wilcoxon test. These results confirm LBF

is sensitive to different patterns than the other methods.

These trends also hold true for other q-value thresholds

(see Supplementary Fig. 1).

The relative concordance of the test results are reiterated

when we take a more granular look at the data. Supplementary

Figure 2 presents pairwise scatterplots of the P-values returned

by each test for all 535 gene sets used here; Pearson correlation

coefficients of log(P-values) are presented in Supplementary

Table 2. The LBF and Wilcoxon results show relatively weak

correlation (0.45) as do the LBF and KS results (0.51),

reinforcing the uniqueness of the LBF results. In contrast, the

Wilcoxon and KS tests display good agreement with a

correlation of 0.87. Upon inspection, it was determined that

the muscle contraction gene set returns highly significant

P-values for all three statistical tests and is an outlier for

both the LBF test (muscle contraction P¼ 1.6E�59, next best

P-value¼ 1.4E�24) and the Wilcoxon test (muscle contraction

P¼�0, next best P-value¼ 3E�28) and may therefore

artificially inflate these correlation coefficients. Removing this

gene set confirms this observation as the correlation between

the LBF and Wilcoxon test is reduced from 0.45 to 0.28, while

the other correlations remain relatively unchanged

(LBF–KS¼ 0.51; Wilcoxon–KS¼ 0.88).

Fig. 1. A Venn diagram depicts the intersection of statistically

significant gene sets returned by each of the three statistical tests.

Fig. 2. Example data for two gene sets returned only by the LBF test:

‘cell structure’ and ‘calcium-mediated signaling’. The histograms on the

left depict the distribution of expression ratios for probesets within a

gene set and all other probesets. The scatterplots on the right indicate

the average expression values for all probesets in myotubes at Day 5

versus myoblasts at Day� 1. Black dots mark probesets within the gene

set of interest, gray dots indicate all other probesets. Note that in the

Wilcoxon test, the P-value returned for these gene sets are not

statistically significant because of the approximately equivalent

contributions of up- and down-regulated genes.

D.M.Kemp et al.
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3.1 Gene sets uniquely identified by LBF

Twenty-nine gene sets were returned as differentially regulated

by only the LBF test (Supplementary Table 3). To be useful, the

LBF test must return gene sets that are not only unique, but

that lead to novel insights or understanding of the underlying
biological processes at work during myoblast differentiation.

Manual inspection of these 29 gene sets reveals that the LBF

results implicate three general processes in myoblast differ-

entiation: cell structure reorganization, Caþþ-dependent signal-

ing and muscle-related signaling. These gene sets tend to
contain balanced numbers of up- and down-regulated tran-

scripts and are therefore not detected using a conventional

enrichment analysis approach with the Wilcoxon test (see Fig. 2

for examples). Taken together, these results validate the

viability of variance tests for garnering additional, biologically
relevant insights from microarray experiments. A closer

examination of these gene sets is presented below.

3.1.1 Cell structure During differentiation of skeletal myo-
blasts, the morphology and structure of the cell is profoundly

altered, such that mononucleated cells fuse to form multi-
nucleated myotubes containing as many as 20 nuclei per cell.

This complete reorganization of the cell’s structural framework

leads to significant transcriptional variance with respect to

cell-structure-related genes. Myotube formation requires the

reorganization of subcellular architecture to implement the
contractile properties necessary for mature muscle fiber

function (Charge and Rudnicki, 2004). The three cytoskeletal-

related gene sets tested in this analysis, ‘cell structure,’ ‘cell

motility’ and ‘cytoskeletal regulation by rho gtpase,’ were each

found to be significantly regulated based on their increased
variance but were not identified as significantly enriched by

either the KS or Wilcoxon tests. This result suggests that

cytoskeletal modifications are accomplished not through

the switching on or off of a single transcriptional program,

but rather through a careful re-balancing of the structural
protein complement expressed within the cells.

The Rho family of small GTPases is involved in a diverse

array of structurally related cellular processes including
regulation of actin cytoskeleton, cell polarity and microtubule

dyamics (Bishop and Hall, 2000; Bokoch, 2000; Etienne-

Manneville and Hall, 2002; Hall, 1998). These proteins are

members of the Ras super family of small GTPases, and are

similar to Ras proteins in size and sequence (Chardin, 1991).
Expression and level of activation of distinct members of the

Rho family starkly differs depending on the cell type and

growth conditions, and recent evidence suggests the dynamic

relationship between the Rho-GTPases during skeletal myo-

genesis (Takano et al., 1998), such that RhoA appears to be
regulated by cell–cell adhesion and insulin/IGF signaling, both

intrinsic to the myogenesis program. Other members of the Rho

GTPase family, including Rac1 and Cdc42 are critical to

myogenesis, although their specific role is unclear.

3.1.2 Caþþ signaling and transport Contraction of skeletal
myofibrils is a fundamental mechanism that clearly defines this

tissue from most others (Chin, 2005). Notably, the C2C12

myotubes are highly contractile, analogous to type 1 (fast

twitch) myofibers, and therefore exhibit a gene expression

signature that enables the integrity of this functional apparatus.

Skeletal muscle contractility is stimulated by release of Caþþ

from the sarcoplasmic reticulum into the cytosol. ATP-

dependent pumps return Caþþ from the cytosol to the

sarcoplasmic reticulum to lower cytosolic Caþþ levels and

ultimately cease contraction. Given the central role of Caþþ

signaling in muscle contractility, it is reasonable to find several

Caþþ-related gene sets differentially regulated between con-

tracting myotubes and non-contractile myoblasts. The available

gene sets explicitly relating to calcium signaling and transport

included ‘calcium-mediated signaling’ and ‘calcium ion homeo-

stasis,’ each of which was detected by the LBF test

(Supplementary Table 3). Genes related to Caþþ signaling in

the context of functional skeletal muscle were up-regulated,

such as troponin, adrenergic receptor beta 2, calsequestrin and

triadin among others. However, genes related to Caþþ signaling

in other cellular contexts such as a GPCR second messenger

signaling were down-regulated, including calmodulin and

various protein kinase C species. Such reciprocal regulation

of Caþþ signaling mechanisms is critical in defining the

intracellular state of the myocyte, and to maintain the

appropriate and optimized cell phenotype.

3.1.3 Muscle-related signaling Several muscle-related signal-
ing pathways were identified by the LBF analysis

(Supplementary Table 3). The nicotinic acetylcholine receptor

signaling gene set includes a subset of highly up-regulated genes

directly involved in muscle contraction. Several cholinergic

receptors that are found at the motor end plate are substantially

up-regulated as are genes involved in the actin/myosin cross-

bridge activities and a voltage-dependent Caþþ channel.

In contrast, various myosin isoforms are down-regulated,

which compromise the overall shift in pathway expression.

The myosin complement of various muscle types including

cardiac muscle, smooth muscle, as well as fast- versus

slow-fiber-type skeletal muscle varies substantially. This

myosin signature for a specific muscle type is important for

specialized function, and hence the distribution within C2C12

myotubes involves up- and down-regulation of several myosin

isoforms in order to achieve the correct balance that underlies

contractile function.
The functional role of FGF2 signaling during the myogenic

program is currently emerging in the literature. A role in wound

healing has been demonstrated such that delivery of FGF2 to

excisional muscle wounds enhanced skeletal muscle repair and

triggered angiogenic responses that subsequently remodeled

into arteriogenes (Doukas et al., 2002). At the myoblast level,

FGF2 was shown to enhance proliferation of C2C12 cells and

attenuate differentiation via activation of p44/p42-MAPK and

suppression of Akt (Tortorella et al., 2001). Such data

implicates FGF2 in the myogenic program and thus appearance

of this pathway in the current data set is consistent, and notably

this was identified by LBF analysis only.

3.2 Gene sets with low variance

One advantage the LBF test holds over other robust variance

tests such as Fligner–Killeen (Conover et al., 1981) is that it

maintains information about the relative magnitudes of the
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variances tested. That is to say, LBF results describe not

only if a gene set has different variance than the background,

but also if its variance is larger or smaller than the background.

Of the 48 gene sets returned by the LBF test, 7 have reduced

variance. These gene sets (Supplementary Table 4) represent

three categories of biochemical activities: protein biosynthesis,

mRNA transcription and oxidative metabolism (Fig. 3).
Gene sets with tight variances do not easily lend themselves

to interpretation. Although it is clear that these gene sets

appear to be under tight transcriptional control, the purpose

and mechanism of this control cannot be deduced from a single

microarray experiment and warrants further investigation.

Nevertheless, examination of the content of these gene sets

offers one potential explanation. All three of these gene sets

include large, multiunit complexes. These include protein

biosynthesis: ribosomal proteins, mitochondrial ribosomal

proteins, eukaryotic translation initiation factor, eukaryotic

translation elongation factors; oxidative metabolism: ATP

synthase, cytochrome c oxidase, NADH dehydrogenase,

succinate dehydrogenase complex, ubiquinol cytochrome c

reductase; mRNA transcription: CCR4-NOT transcription

complex, polymerase (RNA) II (DNA directed). The stoichi-

ometry of complex assembly may necessitate tighter transcrip-

tional control in these pathways. For example, balanced

transcription of ATP synthase subunits may be the most

efficient way to maintain proper levels of the assembled protein

complex. Unbalanced expression of a particular protein subunit

might, in fact, have a deleterious effect on the overall pathway

function via sequestration or other molecular dysfunction. In

contrast, enzymatic or signaling pathways devoid of large

complexes may make use of differentially regulating individual

genes if their products participate in a rate-limiting step or serve

as signal transducers or messengers.
These findings are in agreement with another recent study

that identified the ribosome and oxidative phosphorylation

gene sets among those with tightly correlated expression

patterns across an independent data set (Huang et al., 2006).

Interestingly, the initial application of GSEA also identified

oxidative phosphorylation as differentially regulated in muscle

samples from type-2 diabetics (Mootha et al., 2003). If the tight

transcriptional patterns of these genes sets were to be observed

across multiple experiments, one would need to consider the

downstream effects on computational analyses. In principle,

tightly coordinated gene sets would present cleaner signals

more easily detected above background noise and would

therefore be more amenable to detection by various

enrichment-based analysis methods.

3.3 Gene sets identified by all three tests

A number of gene sets are identified as differentially regulated

by all three tests (Supplementary Table 5). In general, these

gene sets correspond to broad processes that are intimately

involved in the differentiation process and undergo substantial

modulation (see Fig. 4 for examples). These gene sets tend to be

somewhat larger in size as well (means¼ 205.7, 61.2; P¼ 0.018).

Given the size of these gene sets and the broad spectrum of

processes they encompass, it is not surprising that these gene

sets exhibit a number of different statistically significant

rearrangements. It is likely that each of these sets contains

positive and negative regulators of these processes and

correspond to a number of sub-processes or pathways that

function independently of each other. Several gene sets

including muscle contraction (top panel) and cell communica-

tion (bottom panel) exhibit transcriptional changes that

are large in magnitude and broad in scope. Such gene

sets are detected as significantly modulated by all three

statistical tests.

4 CONCLUSION

We have described an extension of the pathway-based

enrichment framework to include a test for the variance of

transcriptional responses. Application of the LBF test extends

the repertoire of detectable transcriptional responses beyond

Fig. 3. The protein biosynthesis, oxidative phosphorylation and

MRNA transcription gene sets all exhibit reduced transcriptional

variance compared to background. Figure layouts are as in Figure 2.

D.M.Kemp et al.
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simple coordinated shifts to account for the complexities of

biological processes as well as the vagaries of existing pathway

knowledge. When applied to microarray data that captures the

transcriptional shifts accompanying myogenesis, the LBF test

unearths additional differentially regulated pathways pre-

viously overlooked by a standard enrichment analysis.

Specifically, the LBF test implicated the modulation of

processes related to Caþþ signaling, cell structure and muscle-

specific signaling during C2C12 mouse skeletal myoblast

differentiation. These responses tend to contain similar

numbers of up- and down-regulated genes and were therefore

missed by the standard enrichment analysis. The calcium-

mediated signaling results illustrate the LBF test’s ability to

identify modulations in the presence of imperfect or loosely

annotated gene sets. Although the calcium-mediated signaling

gene set is accurately labeled, it includes genes involved in two

distinct biological processes: muscle contractile signaling and

second messenger signaling. Nevertheless, the LBF test picks

out this gene set because of the reciprocal behavior of the genes

that drive these two mechanisms. In contrast, both the standard

enrichment analysis and KS test fail to detect these patterns.

Instead these tests bump into a common limitation of available

pathway databases which sometimes lump together related but

separate processes into one category. This result suggests a

method for improving pathway annotations. If a pathway such

as ‘calcium-mediated signaling’ were to consistently show

modulation across a number of different conditions via

variance tests it may be worthwhile to dissect such a pathway

into smaller, coordinately transcribed subsets. In this way, the

analysis of several experiments would serve to feedback into the

reservoir of available biological knowledge and facilitate more

detailed and precise analyses of future experiments.
The application of a variance test is accompanied by a

downstream need for more careful interpretation of results. The

standard location-based enrichment technique identifies simple

transcriptional patterns that lend themselves to easy interpreta-

tion: a particular pathway is either coordinately up- or down-

regulated. In contrast, a significant LBF test P-value indicates

that a pathway is modulated without an indication of the

nature of the modulation. As an example, the ‘calcium-

mediated signaling’ result clearly indicates that calcium homeo-

stasis genes are being differentially modulated. It is only upon

closer inspection of the constituent genes that we recognize this

is a result of activation of muscle-related genes and deactivation

of genes involved in other types of calcium signaling in this

experiment. In another biological system, we might see a

reciprocal behavior with activation of calcium second messen-

ger signaling genes and inactivation of calcium muscle

contraction genes. Both experiments would return a significant

LBF result predicated on very different underlying biological

phenomena.
The introduction of pathway-based analysis methods has

provided a definitive step forward in microarray data mining.

Through application of the LBF variance test, we have

demonstrated the extensible nature of this framework. It

should be noted that while the LBF test enhances the number

and types of detectable biological responses, we believe there is

still considerable room for the application of additional

statistical tests in the use of pathway-based methods. Both

tests used above identify fairly simple patterns. It is our belief

that more complex patterns remain to be culled. As evidence,

consider the results from the KS test which include nine gene

sets whose modes of regulation are not explained by either the

Wilcoxon or LBF tests. We foresee several natural avenues for

the evolution of these pathway-based approaches. In the short

term, we expect additional types of statistical tests may be

designed to identify more complex or subtle patterns of

regulation. These methods will advance in parallel with the

increased knowledge base of biological pathways. While better

delineation of pathways will improve these methods in the short

term, one can hope that increased understanding of pathway

topologies will lend itself to a broad application of more

sophisticated computational techniques to high-throughput

data sets.
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Fig. 4. Several gene sets including muscle contraction (top panel) and

cell communication (bottom panel) exhibit transcriptional changes that

are large in magnitude and broad in scope. Such gene sets are detected

as significantly modulated by all three statistical tests. Figure layouts

are as in Figure 2.
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