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ABSTRACT

Motivation: The false discovery rate (FDR) has been widely adopted

to address the multiple comparisons issue in high-throughput experi-

ments such as microarray gene-expression studies. However, while

the FDR is quite useful as an approach to limit false discoveries

within a single experiment, like other multiple comparison corrections

it may be an inappropriate way to compare results across

experiments. This article uses several examples based on gene-

expression data to demonstrate the potential misinterpretations that

can arise from using FDR to compare across experiments.

Researchers should be aware of these pitfalls and wary of using

FDR to compare experimental results. FDR should be augmented

with other measures such as p-values and expression ratios. It is

worth including standard error and variance information for meta-

analyses and, if possible, the raw data for re-analyses. This is

especially important for high-throughput studies because data

are often re-used for different objectives, including comparing

common elements across many experiments. No single error rate

or data summary may be appropriate for all of the different

objectives.
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1 INTRODUCTION

In an effort to control for multiple comparisons and increase

power over more conventional methods (Dudoit et al., 2003),

the false discovery rate (FDR) (Benjamini and Hochberg, 1995)

has become increasingly popular for large, exploratory data

analyses. In particular, the FDR has become the standard

criterion for assessing results in microarray gene-expression

studies, along with the associated q-value (FDR for a specific

p-value threshold) used to quantify individual comparisons

(Allison et al., 2006; Kerr and Churchill, 2001; Storey and

Tibshirani, 2003; Tusher et al., 2001). These quantities are

defined in Table 1. The FDR is significant in other fields as

well, including for example, imaging (Srikanth et al., 2006),

proteomics (Karp et al., 2007) and genetic association and

linkage (Chen and Storey, 2006).

However, use of the FDR and its associated q-value may

result in inconsistent and misleading interpretation of com-

parisons across different experiments. This inconsistency is

inherent to other stepwise multiple comparison procedures

such as Student–Newman–Keuls (Keuls, 1952) and the Holm

Bonferoni adjustment (Holm, 1979). This difficulty is in part

due to the omnibus nature of such tests, where many different

elements of the tests and family of comparisons can lead to the

same error rate. The rapid increase in popularity of the FDR

has made it more necessary than ever to demonstrate these

inconsistencies. These inconsistencies are fundamental to the

FDR and not to issues of estimation for the FDR, a topic

which has been discussed at great length elsewhere (Allison

et al., 2006; Benjamini and Hochberg, 1995; Storey, 2002;

Tsai et al., 2003).

This topic has not been directly addressed in the multitudes

of papers discussing the FDR. Few papers demonstrate the

potential for interpretation error or issues with comparing the

FDR and q-values across different experiments. Others have

noted potential inconsistencies in the interpretation of any

results that used any multiple comparison procedures (O’Brien,

1983; Rothman, 1990). This inconsistency is often due to

differences in the number of comparisons as illustrated by the

following. Assume that there are two studies, the first compares

all pairs of treatments A, B and C, while the other compares

only treatments A and B. Focusing on the comparison between

A and B, assume both studies observe the same unadjusted

p-value of 0.03 for the comparison. Using a Bonferoni

correction, the first study can adjust for multiple comparisons

yielding an adjusted p-value of 0.09 (3*0.03) for this compar-

ison. As a result, the studies would reach different conclusions

based on a standard 0.05 p-value threshold, despite observing

the same difference between A and B.
Methods to control for the FDR are relatively less sensitive

to the number of comparisons than other procedures that

adjust for multiple comparisons (Holland and Cheung, 2002).

However, even when the numbers of comparisons are identical

across different experiments, the thresholds to control for the

FDR and the associated q-values for individual comparisons*To whom correspondence should be addressed.
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are highly dependent on the results of other comparisons. This

situation is often encountered in microarray studies, where

many series of experiments are based on the same set of genes.

2 RESULTS AND DISCUSSION

2.1 Ten-gene comparisons

For simplicity, assume there are two studies comparing gene-

expression levels between two conditions (expression ratios)

for the identical set 10 genes (clearly, this example can be scaled

to any number of genes). Focusing on gene X, assume both

studies observe the same unadjusted p-value of 0.01 in a test

for differential gene expression (expression ratio not equal to

one). Assume also that this is the smallest p-value among the

10 genes in the first study and the 3rd smallest in the second

study. In the first study a conservative estimate of the FDR

using a p-value threshold of 0.01 would be 10% (10*0.01/1)

and in the second the FDR at that same threshold would

be �3% (10*0.01/3). Based on a 5% FDR threshold, gene X

would be considered differentially expressed in the second

study but not in the first. This result appears to be counter

intuitive; despite observing the same level of differential

expression in gene X, it is considered significant when it is the

third smallest p-value, but is no longer significant when it is the

smallest.

As we shall illustrate in the rest of this article, the nature of

the FDR is such that the larger the pool of differentially

expressed genes, the less conservative the p-value threshold

becomes. This result makes sense probabilistically, however,

practically and intuitively should the significance of this p-value

change in this way? Common sense might suggest the opposite.

One should consider larger p-values when there are only few

differentially expressed genes, not when there are many.

2.2 FDR dependencies

The following equation describes the relationship between the

q-value (qv) and the p-value (pv) of an individual comparison.

It shows how the q-value is dependent on the totality of

comparisons in an experiment.

qv¼
V

SþV
¼

pv �m0

ð1��Þ � ðm�m0Þþpv �m0
¼

pv �p

ð1��Þ � ð1�pÞþpv �p
:

ð1Þ

Notation is defined in Table 1 following Benjamini and

Hochberg (1995). Note that the power (1��) depends on the

significance level or p-value threshold, the particular statistical

test, as well as the distribution of alternative hypotheses. For a

specific FDR (i.e. 5%), the p-value threshold will therefore

depend upon the overall power and the proportion of true

null hypotheses (i.e. the proportion of equally expressed genes).

Figure 1 shows the p-values corresponding to an FDR or

q-value of 5% at different proportions of true null hypotheses

and power. The p-value threshold decreases as power decreases

and the proportion of null hypotheses (equally expressed genes)

increases. At the upper left corner of the figure, where large

numbers of hypotheses are rejected (power¼ 0.9 and 50% null

hypotheses), the p-value threshold to achieve a 5% FDR is near

0.05, which is on the border of what would be considered

significant for a single comparison. On the other hand, at the

bottom right corner, where few hypotheses were rejected

(power¼ 0.25 and 95% null hypotheses), the p-value threshold

is below 0.001, a highly significant difference for a single

comparison.

The local FDR can be defined as the FDR for genes equal to

given q-value (or p-value), where the q-value is the FDR for

genes with p-values as small or smaller (Table 1). It has been

argued that the FDR can be misleading because the error rate

on the rejection boundary (local FDR) is often much higher

than the overall FDR (Efron, 2004). Therefore, using the local

FDR to judge significance might be preferable. However, the

results shown in Figure 1 are not unique to the overall FDR,

but similarly affect the local FDR. For example, see Figure 2

where the distribution of the test statistics (i.e. based on log-

expression ratios) is assumed to be N(�,1) where � is the true

log-expression ratio and �¼ 0 under the null hypothesis and

the distribution of � under the alternative hypothesis is N(1,1).

This formulation allows easy calculation of p-values, FDR and

the local FDR (Efron, 2004). This results in a similar rela-

tionship of p-value thresholds (to achieve 5% FDR) with the

proportion of true null hypotheses as was shown in Figure 1.

However, while the local FDR was higher than the overall 5%

FDR, it does not vary much with the proportion of true null

hypotheses used in Figure 2, ranging from 11.8% down to

10.1%. In fact, if we hold the local FDR fixed at 10%, the

curve changes only slightly from the fixed 5% FDR curve as

shown in Figure 2, where similar variation in p-value thresholds

is apparent. This demonstrates that the local FDR suffers from

the same difficulties and issues as the FDR.

2.3 Mouse liver experiments

The following example is based on microarray data obtained

from the Gene Expression Omnibus (GEO) data repository

developed by the National Center for Biotechnology Infor-

mation at the NIH (Barrett et al., 2007). The study compared

mouse liver samples for a treatment (PPAR� agonist Wy14643)

Table 1. Definitions of error rates in a multiple testing situation using

the notation of Benjamini and Hochberg (1995)

Fail to reject H0 Reject H0 All decisions

H0 true U V m0

H0 false T S m-m0

All H0 m-R R m

Significance¼�¼V/m0.

p-value (pv) is the smallest � for which H0 rejected.

FDR¼V/R.

q-value (qv)¼FDR for a given p-value threshold.

Power¼ 1��¼S/(m�m0) (Note, this is different from the power of an

individual test, which depends on the alternative hypothesis for each individual

test).

Proportion of true null hypotheses¼ p¼m0/m.

Local FDR is the FDR of comparisons on the rejection boundary or equal to a

given.
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versus a control (GEO experiment series GSE8295). The

experiment was repeated for wild-type and mutant mice. The

array contains� 40 000 sequences (genes and variants) and

there were four replicates in each treatment group. Log-

expression values were analyzed using the Limma package

for the R programming language (Smyth, 2003) to generate

p-values and q-values for differential expression studies.
Analysis of the two experiments (wild-type and mutant)

results in disproportionate numbers of differentially expressed

genes at a 5% FDR: 8669 for the wild-type and only 16 for the

mutant. In turn, this results in dramatically different p-value

thresholds to achieve a 5% FDR (0.014 versus 0.00002),

mirroring the example shown in Figure 1. Using 5% FDR

(q-value 50.05) as the threshold, there are a number of

significant, differentially expressed genes in the wild-type exper-

iment with larger p-values, smaller expression ratios and much

lower rankings than non-significant genes in the mutant exper-

iment. The results for three such genes are shown in Table 2.
Clearly, a simple comparison of q-values between the two

experiments can be quite misleading for specific genes. If a

researcher was specifically interested in these three genes and

only had a list of differentially expressed genes with a 5% FDR,

the wrong conclusion is inevitable: these three genes are

significantly differentially expressed in the wild-type experiment

but not in the mutant experiment.

2.4 Use of FDR

FDR is a useful concept and control for multiple testing

issues, particularly for the huge number of comparisons

made in high-throughput experiments such as microarray

gene-expression studies. However, relying only on the FDR

to judge the significance of results across different experiments

can lead to inconsistencies and misinterpretation of individual

comparisons.
The FDR is an appropriate error measure to identify a list

of genes that has a suitable high likelihood of being dif-

ferentially expressed based only on the information from the

specific experiment. It may be advisable not to use a pre-set

FDR threshold, since in some circumstances it may result in

huge numbers of candidate genes, while in others it may yield

only a few.
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Fig. 1. Variation in p-value threshold for a fixed FDR of 5%. Plot

shows p-value threshold to achieve a 5% FDR (or p-value correspond-

ing to a q-value of 0.05) as power and the proportion of true null

hypotheses vary.

0.5 0.6 0.7 0.8 0.9

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

p-
va

lu
e 

th
re

sh
ol

d

FDR = 5%
Local FDR = 10%

proportion of true null hypotheses

 

Fig. 2. Similarity in variation in p-value threshold for a fixed 5% FDR

and 10% local FDR. Plot shows p-value threshold to achieve a 5%

FDR and 10% local FDR as a function of the proportion of true null

hypotheses. The distribution of the test statistics (i.e. based on log-

expression ratios) is assumed to be N(�,1) where � is the true log-

expression ratio and �¼ 0 under the null hypothesis and the

distribution of � under the alternative hypothesis is N(1,1).

Table 2. Comparison of q-values, p-values and expression ratios (ER) for three genes from two different mouse liver microarray experiments (GEO

experiment series GSE8295)

Gene Wild-type experiment Mutant experiment

q-value p-value ER p-val. rank ER rank q-value p-value ER p-val. rank ER rank

Per3 0.03 0.007 1.76 7656 3522 0.06 0.00003 2.75 17 44

Hlf 0.02 0.003 1.53 6509 5433 0.08 0.00005 1.58 25 556

Arntl 0.02 0.003 0.14 6372 316 0.09 0.00009 0.12 38 6

The ranking of the gene in terms of p-value (or equivalently q-value) and ER is also given.
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The FDR is only one type of useful information for
evaluating individual comparisons. For instance, considering
the per comparison error rate (p-value), the magnitude of the
difference (i.e. expression ratios) and perhaps the local FDR

will give a more complete picture of the significance of different
genes. The most appropriate criteria depend upon the objec-
tive(s) of the study. For example, if one wants to ensure each

individual gene has a high likelihood of differential expression,
then the local FDR is more appropriate. If one wants to rank
the most differentially expressed genes then, as was seen in the

mouse liver experiment (Table 2), the FDR, local FDR and
p-value all result in the same ranking of genes, while a ranking
based on the expression ratios is quite different.

When a researcher’s interest is in examining a single gene or
a small group of genes across different experiments, the FDR,
q-values and local FDR are not the appropriate measures. The
research question now focuses on cross-experimental compar-

isons, rather than using a single, entire experiment as the basis
for analysis. In this case, using the FDR, q-value or local FDR
may lead one to exclude comparisons or genes that show

consistently small p-values and large differences, but did not
achieve a desired FDR in all those studies. Therefore, the FDR,
q-values or local FDR can give the false impression that across

studies results were inconsistent; p-values and expression ratios
will be far more informative for comparing the same small set
of genes across different experiments.
A meta-analysis of the experiments (Choi et al., 2003) or,

better still, a re-analysis of the raw data on the restricted set of
genes may provide error rates more specific to this situation.
For example, tests for a difference in expression ratios between

the mutant and wild-type experiments based on a combined
analysis for the three genes in Table 2 show no difference for
Hlf and Arntl (both p-values¼ 0.85). It is also suggestive that

the expression ratio for Per3 was larger for the mutant experi-
ment ( p-value¼ 0.07). These results are contradictory to the
results based on the FDR or q-values.

3 CONCLUSION

Gene expression and other large-scale analyses may initially
have the objective of finding biomarkers or other discovery

targets, and with such an objective, using the FDR is a sensible
method for controlling errors and maximizing the number of
potential discoveries. However, the data from these studies
may serve many purposes, including much more specialized

and targeted analyses. It is important that the reported results
from these studies include more than simple gene lists for a
given FDR.

Including results for all genes and additional quantitative
information such as p-values, expression ratios and local FDR
values can help researchers make better comparisons across

different experiments. Reporting information on variability,
standard errors and sample size may make meta-analyses
possible. Better still is to make raw data available along

with detailed information about the experimental design and
data normalization, such as that which is being done by the

NIH with GEO. This will allow researchers to estimate the

appropriate error rate for the objectives of the study and avoid

inconsistent comparisons that obscure scientific discovery.
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