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ABSTRACT

Motivation: Sample size calculation is important in experimental

design and is even more so in microarray or proteomic experiments

since only a few repetitions can be afforded. In the multiple testing

problems involving these experiments, it is more powerful and more

reasonable to control false discovery rate (FDR) or positive FDR

(pFDR) instead of type I error, e.g. family-wise error rate (FWER).

When controlling FDR, the traditional approach of estimating sample

size by controlling type I error is no longer applicable.

Results: Our proposed method applies to controlling FDR. The

sample size calculation is straightforward and requires minimal

computation, as illustrated with two sample t-tests and F-tests.

Based on simulation with the resultant sample size, the power is

shown to be achievable by the q-value procedure.

Availability: A Matlab code implementing the described methods is

available upon request.

Contact: pliu@iastate.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray and proteomic experiments are becoming popular

and important in many biological disciplines, such as neuro-

science (Mandel et al., 2003), pharmacogenomics, genetic

disease and cancer diagnosis (Heller, 2002). These experiments

are rather costly in terms of both materials (samples, reagents,

equipments, etc.) and laboratory manpower. Many microarray

experiments employ only a small number of replicates (2–8)

(Yang and Speed, 2003). In many cases, the sample size is not

adequate to achieve reliable statistical inference, resulting in

wastage of resources. Therefore, scientists often ask the

following question. How big should the sample size be?
To answer this question, we will calculate sample size that

controls some error rate and achieves a desired power. When

calculating sample size for a single test, the error rate to control

is traditionally the type I error rate, the probability of

concluding a false positive by rejecting the true null hypothesis.

However, we are simultaneously testing a huge number of

hypotheses, each relating to a gene. Hence, multiple testing is

commonly applied in the analysis of microarray data. There are

several kinds of error rates to control in this context, such as

family-wise error rate (FWER) or false discovery rate (FDR).

Assume there are m genes on microarray chips and each gene is

tested for the significance of differential expression. The test

outcomes are summarized in Table 1, where, for example, V is

the number of false positives and R is the number of rejections

among the m tests (Benjamini and Hochberg, 1995).
The FWER is defined to be the probability of making at least

one false positive error: FWER ¼ PrðV � 1Þ. Rejecting each

individual test with a type I error rate of �=m guarantees, by

Bonferroni’s type of argument, that FWER is controlled at

level � in the strong sense, i.e. FWER � � for any combinations

of null and alternative hypotheses. Benjamini and Hochberg

(1995) proposed another type of error to control—FDR, which

is defined to be the expected proportion of false positives

among the rejected hypotheses:

FDR ¼ E ½Q�

and Q ¼
V=R if R40

0 if R ¼ 0

�
ð1Þ

Storey (2002) proposed to control positive FDR (pFDR), i.e.

pFDR ¼ E
V

R
jR40

� �
¼

FDR

PrðR40Þ
: ð2Þ

In many cases of genomic data such as microarray, it was

argued in Storey and Tibshirani (2003) to be more reasonable

and more powerful to control FDR or pFDR instead of

FWER. However, the sample size has been traditionally

calculated with a certain type I error rate and cannot be

directly applied with FDR control.
Several articles have addressed the problem of sample size

calculation in microarray experiments (Hwang et al., 2002; Lee

and Whitmore, 2002; Warnes and Liu, 2006. Lee and Whitmore

(2002) calculated the sample size table with an ANOVA model

when controlling the number of false positives (E ½V �). Hwang

et al. (2002) proposed a method that first identifies*To whom correspondence should be addressed.
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differentially expressed genes and then calculates the power and

sample size on a space reduced by Fisher discriminant analysis.

Warnes and Liu (2006) proposed a method with accumulative

plot to visualize the trade-off between power and sample size.

Some articles have addressed the sample size calculation

problem in different designs (Dobbin and Simon, 2005) or

specific settings such as classification (Hua et al., 2005).

The above methods control type I error and not FDR.
Recently, a few articles investigated the need to calculate

sample size while controlling FDR and proposed ways to pursue

this goal. Yang et al. (2003) applied several inequalities to get a

type I error rate that corresponds to the controlled level of FDR.

Due to the inequalities applied, the sample size is likely

overestimated. Pawitan et al. (2005) investigated several operat-

ing characteristic curves to visualize the relationship between

FDR, sensitivity and sample size. Although their approach can

be useful in calculating the sample size, no simple direct

algorithm was provided. Jung (2005) derived a formula which

relates FDR and the type I error rate. Then FDR is controlled by

an appropriate level of type I error rate. Pounds and Cheng

(2005) proposed an algorithm to iteratively search for the sample

size at which the desired power and controlled level of FDR can

be achieved. Since FDR controlling procedure is gaining

popularity in multiple testings for many problems including

microarray analysis, it is important to be able to calculate sample

size needed to control the FDR when designing the experiment.
Here, we propose a procedure to calculate the sample size for

multiple testing while controlling FDR. First, for any estimate

of the proportion of non-differentially expressed genes and the

level of FDR to control, we find a rejection region for each

sample size. Then power is calculated for the selected rejection

region for each sample size. According to the desired power, a

sample size is finally decided.
Jung’s approach (2005), which was known to us after we had

finished our first draft, is more related to our proposed

approach than others. Both Jung’s and our approaches are

based on the same model assumptions which lead to the same

FDR expression. The FDR expression is then controlled by

studying its relationship to a quantity, which is the type I error

rate for Jung and the critical value (the rejection region) for us.

Jung provided formulas for Z-tests and t-tests. When applying

our approach to Jung’s setting, it yields the same result. Our

approach, however, is more graphical than Jung’s. This allows

the visualization of the trade-off between power and sample

size and provides quick answer when the user-defined quantities

such as power are modified.
In spite of the similarity, this article extends the approach

further to several different directions and we find our approach

very satisfactory. First, we apply our approach to F-tests which

are widely used in microarray data analysis (Cui et al., 2005).

Second, we study our approach carefully for the case when the

means and variances for expression levels vary among genes, an

important and practical setting for microarray. Third, we also

show by simulation, that the q-value procedure for controlling

FDR proposed by Storey et al. (2004) using our suggested

sample size achieves the target power to a satisfactory degree.

This answers the question positively as to whether there would be

any statistical procedure that can realize the target power claimed

by the proposed method. Finally, we also compare our approach

with Yang et al. (2003) and Pounds and Cheng (2005) which

provide more well-defined algorithms than other articles. Our

simulation demonstrates that our proposed method is superior.
The article is organized as follows. Section 2 describes our

proposed method illustrated with two-sample t-tests and

F-tests. In Section 3, we report the result of simulation studies

that compare the power based on proposed method to the

actual result from q-value procedure. Section 4 summarizes

our results.

Codes for the proposed method in Matlab are available to

implement the method.

2 METHOD

In this section, we first illustrate our idea and then show how

to apply the proposed method for two designs of microarray

experiment.

2.1 Proposed method

The proposed method is derived from the definition of pFDR.

Let H¼ 0 if null hypothesis is true and H¼ 1 if alternative

hypothesis is true. In a microarray experiment, H¼ 1 represents

differential expression for a gene whereas H¼ 0 represents no

differential expression. We assume as in Theorem 1 of Storey

(2002) that all tests are identical, independent and Bernoulli

distributed with PrðH ¼ 0Þ ¼ �0, where �0 is interpreted as the

proportion of non-differentially expressed genes. By Storey’s

theorem,

pFDRð�Þ ¼ PrðH ¼ 0 jT 2 �Þ, ð3Þ

where T denotes the test statistic and � denotes the rejection

region. Because the number of genes is large, typically

ranging from 5000 to 30 000, the probability of no significant

findings is close to zero (Storey and Tibshirani, 2003).

Therefore our result also applies to controlling FDR because

FDR ¼ pFDR � PrðR4 0Þ and PrðR4 0Þ is nearly one.

Suppose the level of FDR is chosen to be �, the following

relationship is derived via simple algebra (see Appendix A).

�

1� �

1� �0

�0
¼

PrðT 2 � jH ¼ 0Þ

PrðT 2 � jH ¼ 1Þ
: ð4Þ

For simplicity in notation, we will denote

� ¼
�

1� �

1� �0

�0
: ð5Þ

In order to achieve an FDR level to be � (or less), we choose the

rejection region � so that the right-hand side of Equation (4) is

equal to (or smaller than) � (see Appendix A).

Table 1. Outcomes when testing m hypothesis

Hypothesis Accept Reject Total

Null true U V m0

Alternative true T S m1

Total W R m
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2.2 Applications of proposed method

Microarray experiments are usually set up to find differentially

expressed genes between different treatments. The data

of scanned intensity for microarray usually go through

quality control, transformation and normalization, as reviewed

in Smyth et al. (2003) and Quackenbush (2002). We assume

that data first go through those steps before statistical

tests are applied. Before the experiment, we have no observa-

tions to check the distribution. It seems reasonable to make

a convenient assumption that the distribution of the

pre-processed data is normal and hence two-sample t-tests

and F-tests are applicable. The same assumption is also

made by other proposed methods to calculate sample size

(Dobbin and Simon, 2005; Jung, 2005; Hua et al., 2005;

Hwang et al., 2002).

2.2.1 Two-sample comparison with t-test Suppose we want

to find differentially expressed genes between a treatment and

a control group using two-sample t-tests. The tested hypothesis

for each gene is H0 : �T, g ¼ �C, g versus H1 : �T, g 6¼ �C, g,

where �T, g and �C, g are mean expressions of gth gene for

treatment and control group, respectively. Let xgj and ygj
denote the observed gene expression levels for treatment and

control group respectively for the gth gene and jth replicate.

Assuming equal variance between treatment and control group,

the test statistic for the gth gene is:

Tg ¼
xg � ygffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
g ð1=n1Þ þ ð1=n2Þð Þ

q , ð6Þ

where S2
g ¼ ½1=ðn1 þ n2 � 2Þ�½

Pn1
j¼1ðxgj � xgÞ

2
þ
Pn2

j¼1ð ygj � ygÞ
2
�

is the pooled sample variance, xg and yg are the means of

observed expression levels for gene g for the two groups,

respectively. The test statistic Tg has a central t-distribution

under the null hypothesis and non-central t-distribution under

the alternative hypothesis. We reject the null hypothesis

if jTgj4 cg, for which cg is to be determined. Applying

Equation (4), we find critical value cg that satisfies:

� ¼
PrðjTgj4cg jH ¼ 0Þ

PrðjTgj4cg jH ¼ 1Þ

¼
2 � Tn1þn2�2ð�cgÞ

1� Tn1þn2�2 cg j �g
� �

þ Tn1þn2�2 �cg j �g
� � , ð7Þ

where Tdð�j�Þ is the cumulative distribution function (c.d.f ) of

a non-central t-distribution with d degrees of freedom

and non-centrality parameter �. Moreover, Tdð�Þ is Tdð� j �Þ for
� ¼ 0. In (7),

�g ¼
�g

�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=n1Þ þ ð1=n2Þ

p ð8Þ

where �g ¼ �T, g � �C, g is the true difference between the mean

expressions of treatment and control groups and �g is the

standard deviation for gene g. In this section, we assume

a simplified case that �g and �g are identical for all genes.

Section 2.2.3 deals with the more realistic case when �g and �g
vary among genes. So the subscript g is dropped in this section.

The right-hand side of (7) is strictly decreasing in c and

hence the solution of c is unique when exists. The same

comment applies to the two equations (14) and (17) in later

sections. See Appendix C for proof. In responding to a referee’s

question, we discover that the minimum (over c) level of FDR

is positive, occurring at c ! 1. This is quite interesting since

there is no such positive lower bound for the type I error.

The minimum FDR, however, converges to zero very fast as

sample size increases. See Figure S1 in appendix.
After finding critical values, power is calculated and

sample size will be determined. A special and common case

is the balanced design when the two groups have the same

sample size:

n ¼ n1 ¼ n2 ð9Þ

Figure 1 plots power versus sample size when FDR is

controlled at 5%. As an example, we want to determine the

sample size when �0 ¼ 90%. Suppose a 2-fold change is desired
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Fig. 1. Plot of power versus sample size for t-test. Controlling

FDR at 5%, we applied the proposed method to calculate

power for each sample size. Panel (a) is for �=� ¼ 2 and panel (b) is

for �=� ¼ 5:
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(correspondingly, � ¼ log2ð2Þ ¼ 1) and � ¼ 0.5 from previous
knowledge, then �=� ¼ 2. Using the middle curve in Figure 1a,

a desired power of 80% would require a sample size of 9 for
each group.
We have included the case when �0 is relatively small

(50%) in Figure 1. When �0 is small, the microarray data
should be normalized with care because the normalization

method for microarray typically relies on the assumption of big
�0, i.e. a small number of differentially expressed genes. In this

case, we suggest to use housekeeping genes to perform
normalization. Our method would still be applicable if the

proper estimate of � (based on appropriately normalized
values) is used.
We shall take � to be 0.2, which is the median of standard

deviations of the U133 microarray data set in Warnes and
Liu (2006), i.e. the gene expression levels of human smooth

muscle cells from healthy volunteers. (One of the referees
mentioned to us that the median � is typically around 0.7 with

human samples and U133A arrays. In such a case, we would set
� to be 0.7 instead.) Also in Cui et al. (2005), 0.2 is

approximately the 90th percentile of residual standard devia-
tions for the granulosa cell tumor microarray data. (Here 90th

percentile is a conservative choice in that if we had used a
percentage smaller than 90%, the sample size needed would be

smaller.) If still a 2-fold change (� ¼ log2ð2Þ ¼ 1) is considered
to be true effect size, then �=� ¼ 5. From the middle curve of

Figure 1b, corresponding to �0 ¼ 0:9, one can determine that a
sample size of 4 is needed to obtain at least 80% of power.

2.2.2 Multi-sample comparison with F-test For microarray

experiments comparing several treatments, there are different
design schemes applied (Yang and Speed, 2003). Suppose

without any replication, a design requires s slides. We call the
s slides a set for this design. For example, we want to compare

gene expressions among three independent treatments, such as
livers from three genotypes of mice (Horton et al., 2003). If we

apply a loop design as shown in Figure 2, a ‘set’ of three slides
is needed for two-color microarray experiment. Whether the

replicates are different biological samples or different technical
repetitions, our method is applicable as long as the appropriate

parameter (means and variances) are used in the calculation.
We recommend to use different biological samples in
the experiment because this would provide more general

conclusions. The question is how many sets of the

slides are adequate to obtain a sufficient power and a

controlled FDR.

For each individual gene, the experimental design can be

formulated with the same linear model for each set i,

i ¼ 1, 2, . . . , n,

Yg, i ¼ Xbg þ eg, i, ð10Þ

where bg( p� 1) is the vector of parameters for gene g, Yg,i is

the observed vector for gth gene in the ith set, X is the

design matrix and eg, i is the error term. It is assumed that the

errors are independent across genes and across sets in this

section. For the design in Figure 2, Yg would be the log-ratio

of normalized gene expression levels for gth gene, and two

estimable parameters can be the gene expression difference

between treatments I and II, and difference between

treatments I and III (Yang and Speed, 2003). Then the design

matrix is

X ¼

1 0

�1 1

0 �1

2
664

3
775:

More complicated models can be constructed for more

complex designs and corresponding terms should be added

for effects that are not corrected during normalization, such

as such array effects, dye effects and block effects. See, for

example, Cui et al. (2005). For n sets of slides for a design,

the least square estimate of bg is:

b̂g ¼
Xn
i¼1

ðX 0X Þ
�1X 0Yg, i=n ¼ ðX 0X Þ

�1X 0
Xn
i¼1

Yg, i=n: ð11Þ

With the assumption of normal distribution for the error, b̂g
is also normally distributed,

b̂g � Nðbg, �
2
gðX

0XÞ�1=nÞ:

We can apply this result and draw statistical inference for these

parameters and their linear contrasts.
In general, assume that the question of interest is to test

H0 : L
0bg ¼ 0 versus H1 : L

0bg 6¼ 0, where L is a p� k

coefficient matrix (k � p) or p� 1 vector for the linear

contrast(s) of interest. For simplicity, we omit the subscript g

since we assume that the same test is applied for all genes

separately. The F-tests based on n sets can be constructed with

the following test statistic:

Fn ¼
ðL0b̂Þ0 � ½L0ðX 0XÞ�1L=n��1 � ðL0b̂Þ=kPn

i¼1ðYi � Xb̂Þ0ðYi � Xb̂Þ= dðnÞð Þ
: ð12Þ

Under H0, Fn follows a F-distribution with k and d(n)

degrees of freedom where d(n) is a function of n and depends

on the design. For example, d(n) for the design shown in

Figure 2 is 3n� 2. Under H1, Fn follows a non-central

F-distribution with the same degrees of freedom and a

non-centrality parameter �:

� ¼ ðL0bÞ0��1ðL0bÞ, ð13Þ

where � ¼ �2L0ðX 0XÞ�1L=n.

Treatment I Treatment II

Treatment III

Fig. 2. A design example for microarray experiment to compare gene

expressions among three treatments. By convention, each arrow

represents one two-color array with the green-labeled sample at the

tail and the red-labeled sample at the head of the arrow. This design

needs three arrays for one loop.
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Applying Equation (4), we get

� ¼
PrðFn4c jH ¼ 0Þ

PrðFn4c jH ¼ 1Þ

¼
1� Fk, d ðnÞðcÞ

1� Fk, d ðnÞðc j�Þ
, ð14Þ

and the same procedure follows to calculate the sample size

needed. Here, we choose c to satisfy Equation (14). Similar to
(7), solution of c to (14) is unique when exists. See Appendix C.

Using such a c, we calculate the power PrðFn 4 c jH ¼ 1Þ and
then plot the power against n. Figure S2 in Appendix shows the

resulting curves that are similar to those in Figure 1.

2.2.3 Case for unequal �g and �g So far, we have proceeded

as if all genes have the same set of parameters. In such cases, the
average power across all genes would be the same as the power

for individual genes. In reality, each gene may have a different
set of parameters. If we use the two-sample comparison as an

example, the gene-specific parameters include �g, the standard
deviation, and �g, the true difference between the mean

expressions of the treatment and the control group.
To study the realistic case when �g and �g depend on g, we

assume that they follow some distribution with the probability
density function �ð�g, �gÞ. The distribution can be a parametric

or nonparametric one that has been estimated from data of
similar experiments. For example, when designing an experi-

ment, a pilot study could be available, based on which the
distribution of parameters can be estimated. In this case,

our procedure can be extended to calculate a sample size while

obtaining an average power across all genes. Here by average
power, we mean the power integrated with respect to �ð�g, �gÞ,

Pr T 2 � jH ¼ 1ð Þ

¼

ZZ
PrðT 2 � jH ¼ 1,�g, �gÞ�ð�g, �gÞ d�g d�g: ð15Þ

Using Equation (15) and the argument similar to what leads to

Equation (4), we conclude that the FDR is � if

� ¼
PrðT 2 � jH ¼ 0ÞRR

PrðT 2 � jH ¼ 1,�g, �gÞ�ð�g, �gÞ d�g d�g
: ð16Þ

where

� ¼
�

1� �

1� �0

�0
:

When we apply this to the t-tests, similar to Equation (7),

Equation (16) becomes

� ¼
Prð jTg j4c j H ¼ 0ÞRR

Prð jTg j4c jH ¼ 1,�g, �gÞ�ð�g, �gÞ d�g d�g
, ð17Þ

where the numerator equals 2 � Tn1þn2�2ð�cÞ and the denomi-
nator equals

1�

ZZ
Tn1þn2�2 c j �g

� �
�ð�g, �gÞd�gd�g

þ

ZZ
Tn1þn2�2 �c j �g

� �
�ð�g, �gÞd�gd�g: ð18Þ

Note that �g is as defined in (8). As before, Tdð� j �Þ denotes the
c.d.f. of t-distribution. We then solve for the critical value c and

apply the same procedure to get the sample size needed. The
solution for c is unique when exists, see Appendix C. The same

technique extends to the F-tests or other tests of interest.

To illustrate our idea in more detail, we assume that the

mean difference expression level of differentially expressed

genes, �g, follows a normal distribution and variances of
expression levels for all genes follow an inverse gamma

distribution:

�g � Nð��, �
2
�Þ,

�2
g � Inverse Gamma ða, bÞ,

and we use �1ð�gÞ and �2ð�gÞ to denote the p.d.f. of �g and �g,
respectively. Then we solve for c based on Equations (17) and
(18) for specified level (�) of FDR and proportion of non-

differentially expressed genes (�0). This involves integrations.

To deal with the integration, say in (18), the inner integral

equals (see the Appendix B for derivation)Z
Tn1þn2�2 cj�g �g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ

1

n2

r, !
�1 �g

� �
d�g

¼Tn1þn2�2
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�=ð�
2
g 1=n1þ1=n2ð ÞÞþ1

q j ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�þ�2g 1=n1þ1=n2ð Þ

q
0
B@

1
CA:

ð19Þ

For the integration with respect to �g, we can apply adaptive

Lobatto quadrature for numerical integration which allows

a stable calculation to get the root of c. The calculation with

this numerical integration provides answers instantly. Once we

get answers of c for each sample size, we calculate power

accordingly and find the needed sample size based on power.

3 SIMULATION

How realistic is the calculated sample size proposed in

this article? More specifically, if the desired power is 80%,

FDR¼ 5% and our approach results in a sample size of 9 for

the two-sample comparison with t-test, is there a statistical test

that would actually achieve all the operating characteristics

with 9 slides? To find out, we simulate data with calculated

sample size and perform multiple testing with an FDR

controlling procedure. Then we checked:

	 whether the multiple testing actually results in desired

power for the calculated sample size, and

	 whether the observed FDR is comparable with the level

that we want to control.

If we can find a statistical procedure that achieves the desired

FDR and power at the calculated sample size, our procedure is

then demonstrated to be practical. This is indeed the case.
There are several procedures to control FDR, such as the

q-value procedure proposed by Storey and Tibshirani (2003)

and Storey et al. (2004), and the procedures proposed by

Benjamini and Hochberg (1995, 2000). These procedures all

have the FDR conservatively controlled (Storey et al., 2004).

For the purpose of simulation study, we apply the q-value

procedure as outlined in Storey et al. (2004) to control FDR.

Calculation for sample size while controlling false discovery rate
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The earlier version of the manuscript applied the procedure in

Storey and Tibshirani (2003) and the results were similar to the

report here.
We first test the proposed method when observations (genes)

are independent of each other. In a microarray setting, we

suppose there are a total of 5000 genes and we have equal

sample size for the treatment and the control groups

(n1 ¼ n2 ¼ n). Gene-specific variances, �2
g , are simulated from

an inverse gamma distribution. Same as in Wright and Simon

(2003), we chose 1=�2 � �ð3, 1Þ because this distribution

approximates well several microarray data sets that we have

been analyzing. For the control group, gene expression values

are simulated from Nð0, �2
gÞ. For the treatment group, we set

�g¼0 for non-differentially expressed genes and simulate �g

from Nð2, �2
�Þ for differentially expressed genes, then gene

expression values are simulated from Nð�g, �
2
gÞ.

There are several parameters involved for the simulation, �0

(the proportion of non-differentially expressed genes), �� (the

standard deviation of effect size) and for the dependent case,

the correlation coefficient �. To evaluate the accuracy of our

sample size calculation method, we perform the simulation with

a factorial design and the levels (values) of each factor

(parameter) are summarized in Table 2. For each of the

48 parameter settings, the FDR is controlled at 5% for multiple

testing.

For each parameter setting of independent cases, we

calculate the anticipated power for each sample size and

generate the power curve as described in Section 2. We also

simulate 200 sets of data and perform t-tests for each data set

with q-value procedure (Storey et al., 2004) to control FDR.

The observed power is averaged over the 200 simulated data

sets and observed proportion of false discoveries is also

recorded. Comparing with the simulation results, the antici-

pated power curves based on our calculation are almost

indistinguishable from the simulation results for all parameter

settings. Examples are shown in Figure 3a. Hence, our

proposed method provides an accurate estimate of sample

sizes. The observed FDR is also close to the controlled level

(5%) as shown in Figure 3b, justifying the validity of the

procedure in Storey et al. (2004).
Since many genes may function as groups, it is very likely

that dependencies exist in gene expression data. To check the

performance of the proposed method when the assumption of

independence is violated, gene expression levels are also

simulated according to a dependence structure (Ibrahim et al.,

2002). Then the same procedure of testing as above is applied

and the resulting power curves are compared with our

calculation.

More specifically, gene expression levels for differentially

expressed genes are simulated in blocks of 25 according to the

following hierarchical structure described in Section 4 of

Ibrahim et al. (2002):

�X � Nð0, v20Þ

�Y � Nð2, v20Þ

�Xg j�X � Nð�X, �
2Þ

�Yg j�Y � Nð�Y, �
2Þ

�2
g � Inverse Gammað3, 1Þ

Xgi j�Xg � Nð�Xg, �
2
gÞ

Ygi j�Yg � Nð�Yg, �
2
gÞ;

where Xgi and Ygi (g ¼ 1, 2, . . . ,G, i ¼ 1, 2, . . . , n) are the gene

expression levels for the control group (indexed with X ) and

treatment group (indexed with Y ), respectively. For non-

differentially expressed genes, we simulate �Xg the same as

above and set �Yg ¼ �Xg, based on which we simulate the gene

expression levels Xgi and Ygi. Please note that the
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Fig. 3. Simulation results. (a) Observed power curves are plotted with

dashed lines while the anticipated power curves based on our

calculation are plotted with solid lines for different �0’s. For all three

�0’s, the difference between the anticipated and observed power are

almost indistinguishable. (b) Observed false discovery rates (FDRs)

for the three parameter settings corresponding to (a) are plotted.

The controlled level of 5% is indicated with the dashed line.

Table 2. Parameter values in simulation study

Parameter Values in simulation

�0 0.995, 0.95, 0.9, 0.8

�� 0.2, 1, 2

� 0, 0.2, 0.5, 0.8
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correlation coefficient, �, equals v20=ðv
2
0 þ �2Þ and

�2
� ¼ 2ðv20 þ �2Þ with �g ¼ �Yg � �Xg. Examples of power

curves are presented in Figure 4. For all 36 parameter settings

of the dependent case, 34 of them show results similar as in

Figure 4a. This demonstrates that the anticipated power

approximates really well to the actual power. There are two

settings that the discrepancy between anticipated power and

calculation is relatively larger than others. Figure 4b includes

the worse one (�¼ 0.8) of the two. Even for this case, the

anticipated power based on our calculated sample size is very

close to the simulation results.
When �g and �2

g are the same for all genes, simulation shows

that our method can provide accurate sample size estimation

both for independent genes and dependent data similarly as the

simulation results shown above.

There are several articles addressing the question of

calculating sample size while controlling FDR. Among these

articles, Yang et al. (2003) and Pounds and Cheng (2005)

provided clearly defined algorithms. We have compared our

approach with these methods in the context of two-sample

t-test for fixed �g and �2
g . Table 3 shows that the calculated

sample size based on our proposed approach agrees with

the actual sample size needed based on simulation result.

Yang’s approach results in similar answers as ours except that

in some case, it is a little conservative. Answers from Pounds

and Cheng’s algorithm are too liberal in one situation

(when �=�¼ 1) and deviate from the right answer a lot more

than the other two methods.

4 DISCUSSION

The number of arrays included in microarray experiments

directly affects the power of data analysis. It is critical to have

a guideline to select a sample size. Because of the huge

dimensionality associated with those data sets, controlling

FWER is very conservative in many cases (Storey and

Tibshirani, 2003). Instead, FDR proposed by Benjamini and

Hochberg (1995) and Storey (2002) seem to be a more

appropriate error rate to control and has been widely applied

to microarray analysis. Therefore, it is important to obtain a

method to give the sample size that would control the FDR and

guarantee a certain power.

The method is straightforward to apply as described in

Section 2 for t- and F-tests. The proposed method can be

generalized to other tests, as long as there is an explicit form

to calculate the type I error and power of an individual test.

The method presented in this article allows calculation for

an accurate sample size with minimum effort when designing

an experiment.
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