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ABSTRACT

Motivation: Normalization of microarray data is essential for

multiple-array analyses. Several normalization protocols have been

proposed based on different biological or statistical assumptions. A

fundamental problem arises whether they have effectively normal-

ized arrays. In addition, for a given array, the question arises how to

choose a method to most effectively normalize the microarray data.

Results: We propose several techniques to compare the effective-

ness of different normalization methods. We approach the problem

by constructing statistics to test whether there are any systematic

biases in the expression profiles among duplicated spots within an

array. The test statistics involve estimating the genewise variances.

This is accomplished by using several novel methods, including

empirical Bayes methods for moderating the genewise variances

and the smoothing methods for aggregating variance information.

P-values are estimated based on a normal or � approximation. With

estimated P-values, we can choose a most appropriate method to

normalize a specific array and assess the extent to which the

systematic biases due to the variations of experimental conditions

have been removed. The effectiveness and validity of the proposed

methods are convincingly illustrated by a carefully designed

simulation study. The method is further illustrated by an application

to human placenta cDNAs comprising a large number of clones with

replications, a customized microarray experiment carrying just a few

hundred genes on the study of the molecular roles of Interferons on

tumor, and the Agilent microarrays carrying tens of thousands of

total RNA samples in the MAQC project on the study of

reproducibility, sensitivity and specificity of the data.

Availability: Code to implement the method in the statistical

package R is available from the authors.

Contact: jqfan@princeton.edu

1 INTRODUCTION

Microarray techniques have been widely used in many areas of

biological research. They have substantial impact on tumor

diagnostics, and classification and understanding of the

molecular mechanisms of biochemical processes, tumorigenesis

and tumor developments. Proper statistical analysis is vital for

revealing meaningful biological results. For an overview of

statistical analysis of DNA microarrays, we refer to Fan and

Ren (2006) and references therein.

The quality of microarray data is very important for down-

stream statistical analysis (Eisenstein, 2006; Marshall, 2004;
Patterson et al., 2006; Shi et al., 2006). Experimental variations,
such as RNA quality, probe labeling, hybridization condition,

washing, signal and background detection in the scanning
process, slide and block effects, pose significant challenges in the

analysis of microarray data. The first step in microarray analysis
is to remove the systematic biases due to the variations in

experimental conditions so as to make multiple array analyses
meaningful. These efforts are collectively referred to as the
normalization of microarray data in the literature.

A number of useful normalization protocols have been
proposed based on different assumptions. These include the

global normalization (Kroll and Wölfl, 2002), rank invariant
normalization (Tseng et al., 2001), LOWESS normalization
(Dudoit et al., 2002), Semi-Linear In-slide Model (SLIM, Fan

et al., 2004, 2005), Two-way Semi-Linear Models (TW-SLM,
Huang et al., 2005), robust TW-SLM (Ma et al., 2006; Wang

et al., 2005) and normalization of small diagnostic microarrays
(Jaeger and Spang, 2006). Recently, two seminal normalization

methods (CADS and eCADS) based on dye swap and statistical
models are proposed byDabney and Storey (2007a, b). All of the
aforementioned methods are based on some statistical and

biological assumptions. For example, the global normalization
is adequate only when there is no print-tip block effect and no

intensity effect; the LOWESS method assumes implicitly that at
each given intensive level the average expression level of up- and

down-regulated genes are about the same in each print-tip block;
SLIM, TW-SLM, robust TW-SLIM all require that the
statistical models are correct. The questions then arise naturally

for a given array, which methods are most effective to normalize
the data and whether the data have been properly normalized.

These questions are very fundamental to the statistical analysis
of microarray and have not yet been addressed.
Our study is motivated by the aforementioned fundamental

concerns. Our approach is to use the duplicated spots within an
array. They contain the most valuable information about

possible systematic biases in the microarray experiments. The
idea is that if microarray data have been properly normalized,

there should be no systematic biases among duplicated spots.
Therefore, when the sum of the square differences of duplicated
spots, standardized by the estimated genewise variances, are

aggregated among many different genes having duplications,
the test statistic follows approximately a �2-distribution with

a large degree of freedom, or more formally a normal*To whom correspondence should be addressed.
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distribution. This provides a simple and useful diagnostic test
statistic to check if an array has been properly normalized by a

particular method. Regarding the test statistic as a measure of

the discrepancy of replicated spots after normalization, we
select a normalization method that has the smallest value of the

test statistics. In addition, the associated P-value of the test

statistic enables us to judge the degree to which the normal-

ization has been properly carried out.
In implementing the validation tests, it involves inevitably the

estimation of genewise SDs and variances. A precise estimate of
SDs and variances will improve the statistical power of the

validation tests. It has also important applications in selecting

significant genes (Cui et al., 2005; Dudoit et al., 2003; Reiner
et al., 2003; Storey and Tibshirani, 2003; Symth et al., 2005;

Tusher et al., 2001; ). The precision of estimating genewise SDs

and variances depends on the number of replications that are

available. Several innovative strategies will be introduced to
enhance the precision of the estimate.

Duplicated spots play very important roles in the analysis of
microarray data. They are not only powerful for normalization

(Fan et al., 2004), but also useful for genewise variance

estimation (Smyth et al., 2005) in selecting statistically
differently expressed genes. Furthermore, they are fundamental

to our proposed validation tests. The availability of such

duplicated genes can be accomplished by the designs of c-DNA

microarrays. For example, in the microarrays analyzed by Fan
et al. (2004), 111 out of 19 968 clones of genes were printed

twice randomly on the 32 print-tip blocks. This enables them to

untangle the block effects and intensity effects from these 111
duplicated spots. With the increased popularity of customized

microarrays, which enables researchers to focus only on

hundreds of genes of their primary interest with more reliable

measurements, within-array replications can easily be obtained.
The gene selection biases in customized arrays require more

sophisticated normalization techniques. The validation tests are

essential for controlling the quality of downstream statistical
data analysis of customized arrays.

2 METHODS OF NORMALIZATION

There are several useful normalization methods, which are based on

different biological or statistical assumptions. We briefly review several

of them that will be used in our numerical studies.

Suppose that we have J replications of a c-DNA microarray

experiment. For each given array, there are N different genes. Among

them, G genes are replicated I times. Let Ig denote the number of

replications for gene g, with Ig ¼ 1 indicating no duplication. For

customized arrays, usually G ¼ N (all genes have within-array

replications) and Ig ¼ 2 or 3 or 4. However, this can also be designed

differently. For the microarrays analyzed in Fan et al. (2004), G¼ 111

and N ¼ 19 968� G so that Ig ¼ 2 only for 111 clones that are

duplicated and randomly placed on 32 print-tip blocks.

Let Rgij and Ggij be respectively the intensities of red (Cy3) and green

(Cy5) channels for the ith duplication of the gth gene in the jth array,

and bgi be the print-tip block where the ith duplication of the gth gene

resides. Then, we can compute the log-ratios and log-intensities as

Ygij ¼ log2ðGgij=RgijÞ; and Xgij ¼ 0:5 log2ðGgij � RgijÞ:

The global normalization is to compute the median m̂j of log-

ratios fYgijg of the jth array and to normalize the data for the jth array as

Ŷgij ¼ Ygij � m̂j: ð1Þ

This basically assumes that the up-regulated and down-regulated

genes are about the same, which does not usually hold for customized

arrays due to gene selection biases. In addition, the global normal-

ization assumes no block or intensity effects.

To address the above two concerns, Dudoit et al. (2002) apply the

global normalization technique more locally to each block and each

intensity level, resulting in the LOWESS normalization. For the data

fðXgij;YgijÞ : bgi ¼ bg in a given print-tip block b of the jth array, they

applied the LOWESS smoother to estimate the conditional mean

function m̂bjðxÞ of the log-ratios Y given the intensity level X ¼ x, and

computed the normalized log-ratios in the bth block in jth array as

follows:

Ŷgij ¼ Ygij � m̂bjðXgijÞ; with bgi ¼ b: ð2Þ

This significantly relaxes the restrictions of the global normalization, but

still assumes that up-regulated and down-regulated genes are about the

same at each given intensity level. Again, this might not be appropriate

when the cells or tissues are treated by cytokines. It might not be valid for

customized arrays due to gene selection biases.

To address these issues, Fan et al. (2004) introduced the SLIM

technique based on the model assumption:

Ygij ¼ �g þ �j;bgi þmjðXgijÞ þ "gij; ð3Þ

in which �g is the treatment effect on gene g, bj and mj represent

respectively the array-specific block and intensity effect and " is the

stochastic noise. For each given array j, Fan et al. (2004) estimated the

model parameters using the data from duplicated spots and computed

the normalized data

Ŷgij ¼ Ygij � �̂j;bgi � m̂jðXgijÞ: ð4Þ

In Fan et al. (2005), the efficiency of parameters in (4) is improved by

aggregating the data from all arrays. Namely, the parameters in (3) are

jointly estimated using all arrays.

TW-SLM (Huang et al., 2005) and robust TW-SLM (Ma et al., 2006;

Wang et al., 2005) are in the same spirit as SLIM. It does not require

duplications of spots but relies heavily on the assumption that

the treatment effect �g is independent of the array. Statistically, it is

a specific model of (3) with � ¼ 0. With estimated parameters, the

normalized data are computed as in (4) with �̂j;bgi ¼ 0. TW-SLM applies

the technique for each given block so that the block effects in each array

have been properly taken care of.

The effectiveness of SLIM, TW-SLM and robust TW-SLM depends

critically on the statistical model assumption. With so many normal-

ization methods, the questions arise naturally which method is the most

appropriate for a specific array and whether the expression profiles

have been properly normalized.

The CADS and eCADS (Dabney and Storey, 2007a, b) are the

normalization methods based on dye-swap and statistical models. They

aim at preserving time differential expression relationships among the

treatment and control arrays after normalization.

3 VALIDATION TESTS

Within array replications not only provide useful information

about the possible systematic biases: block effect and intensity

effect, but also play an important role in validation tests of the

necessity and effectiveness of the normalization methods. When

the log-ratios have been properly normalized, the systematic

biases should be negligible and hence the following model holds

approximately:

Ŷgij ¼ �g þ "gij; ð5Þ

g ¼ 1, . . . ;N; i ¼ 1, . . . ; Ig; j ¼ 1, . . . ; J;

where Ig is the number of duplication for gene g. See also (4).
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Duplicated spots provide valuable information about
the validity of model (5) for each given array. We will use only

G genes with I replications for each given array to develop the

validation tests, and drop the subscript j to facilitate the
notation. This leads to the simplified notation:

Ŷgi ¼ �g þ "gi; g ¼ 1, . . . ;G; i ¼ 1, . . . ; I: ð6Þ

Hence, the difference Ŷgi � �Yg should have mean zero, where
�Yg ¼

PI
i¼1 Ŷgi=I. We will assume that the first four moments of

the noise behave like those of a normal distribution:

E"gi ¼ 0; E"2gi ¼ �2
g ; E"3gi ¼ 0; E"4gi ¼ 3�4

g :

3.1 Genewise standardization

Two natural test statistics for testing model (6) are based on the

genewise standardized L2- and L1-norm, aggregated over
G genes having duplications. Specifically, we let

T1 ¼
XG
g¼1

nXI

i¼1

ðŶgi � �YgÞ
2=�2

g

o
: ð7Þ

Under the normality assumption "gi � Nð0; �2
gÞ, if the data

have been properly normalized, the test statistic T1 follows the

�2-distribution with degree of freedom ðI� 1ÞG. In particular,
when I¼ 2,

T1 ¼
XG
g¼1

ðŶg1 � Ŷg2Þ
2=ð2�2

gÞ � �2
G:

Note that the test statistic above is reasonably robust to the

normality assumption. In the validation test, the number of

genes with duplications G is reasonably large and by the Central
Limit Theorem,T1 follows approximately a normal distribution.

In this case, �2
ðI�1ÞG is also approximately a normal distribution.

Hence, the null distribution �2
ðI�1ÞG is approximately valid.

Instead of using the L2-norm, one can use a more robustified

norm L1-norm. This leads naturally to consider the test based
on the genewise standardized L1-norm:

T2 ¼
XG
g¼1

nXI

i¼1

Ŷgi � �Yg

��� ���=�go: ð8Þ

In particular, when I¼ 2, the test statistic reduces to

T2 ¼
XG
g¼1

Ŷg1 � Ŷg2

��� ���=�g:
By the Central Limit Theorem,

T2 �
a
Nð�IG; �

2
IGÞ; ð9Þ

where �I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IðI� 1Þ=�

p
and �2I ¼ var

PI
i¼1 jŶgi � �Ygj=�g

� �
.

Specifically,

�2I ¼
2ð1� 2=�Þ ¼ 0:7268; when I ¼ 2
ð4

ffiffiffi
3

p
� 12Þ=�þ 8=3 ¼ 1:0523; when I ¼ 3:

�

3.2 Aggregated standardization

Accurate estimates of the genewise SD �g are challenging. The

process itself may depend on the selection of a method of
normalization. The test statistics T1 and T2 may not be well

approximated by the �2-distribution or the normal distribution,

when the genewise variances are not estimated accurately.

In addition, the standardized square differences in T1 and T2

are sensitive to the estimation error in �g. On the other

hand, the aggregated variance G�1
PG

g¼1 �
2
g or aggregated

SD G�1
PG

g¼1 �g can be more accurately estimated. These

considerations lead us the unweighted differences among the

expression profiles of replicated spots.

The aggregated differences among replicated spots when

standardized, are given by

T3 ¼

PG
g¼1

PI
i¼1

ðŶgi � �YgÞ
2
� ðI� 1Þ

PG
g¼1

�2
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðI� 1Þ
PG
g¼1

�4
g

s : ð10Þ

The test statistic T3 is obtained by aggregation first followed by

standardization.Ontheotherhand, the test statisticT1 isobtained

by standardization first and followed by aggregation. The null

distribution of T3 follows approximatelyNð0; 1ÞwhenG is large.
Following the same spirit, a more robustified counterpart of

T2 is

T4 ¼

nXG
g¼1

XI

i¼1

Ŷgi � �Yg

��� ���� �I
XG
g¼1

�g

o
=
n
�I

�XG
g¼1

�2
g

�1=2o
: ð11Þ

where �I and �I are two constants defined in (10). The null

distribution of T4 follows approximately Nð0; 1Þ, when the data

are properly normalized.
Note that the test statistic T4 involves the estimation of

aggregated SD
PG

g¼1 �g. If this is estimated with bias, then the

null distribution will be shifted. The genewise variance is usually

estimated by the sample variance or aggregated sample variance

S2
g. Suppose that S2

g has the distribution KS2
g=�

2
g � �2

K with a

given degree of freedom K, then S2
g is an unbiased estimator of

�2
g , but Sg is not an unbiased estimator of �g. An unbiased

estimator of �g is given by (Gurland and Tripathi, 1971)

fðK=2Þ1=2�ðK=2Þ=�ððKþ 1Þ=2Þg Sg: ð12Þ

In our numerical studies, this is implemented in T2 and T4. Our

experiences show that the correction factor in (12) is necessary

in order to obtain a more accurate approximation of the null

distribution.

3.3 Choosing a method of normalization

The test statistics T1, . . . ;T4 can be regarded as measures of

effectiveness of normalization. The smaller, the less discrepancy

among repeated measurements, and the more effectiveness of a

normalization method. For a given array, among several

normalization methods, we would choose the one that has the

smallest test statistic. The associated P-value gives us an idea on

the extent to which the expression profiles have been normalized.

The power of the validation test depends on the number of data

points G in the training set. Excessively, large G will result in

overpower of the tests to reject even a tiny systematic bias.
As to be discussed in Section 4, the implementation of the

validation tests might require the choice of an appropriate

normalization method first in order to estimate the genewise

variances. The aggregated standardization tests T3 and T4 can

be used for this purpose, since the normalization constants can

be ignored.
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3.4 Training and testing sets

In many situations, there are many genes that have duplica-

tions. This is particularly the case for the customized arrays. In

these situations, we can randomly select between 50 and 100

different genes as the testing set and use the remaining genes as

the training set. The training set is used to estimate the
parameters in the normalization, while the testing set is applied

to the validation tests.
In other situations, there are limited genes that have

duplicated spots. In this case, the multi-fold cross-validation

ideas can be employed to choose the training and testing sets.

4 ESTIMATION OF GENEWISE VARIANCE

Accurate estimation of genewise variance �2
g is important for

assessing the effectiveness of normalization. It is also critically

important for selecting the genes that are statistically differently

expressed among treatments and controls ( Cui et al., 2005; Fan

and Ren 2006; Fan et al., 2004; Storey, and Tibshirani, 2003;
Tusher, et al., 2001). In particular, Cui et al. (2005) demonstrates

that genewise variance estimation has direct impact on the

sensitivity and specificity of selecting differently expressed genes.

4.1 Use of within array replications

A natural estimate of the genewise variance is the sample

variance of the duplicated expressions. These log-ratios are

computed after the data are normalized. If there are several

normalization methods available, one can use T3 and T4 without
standardization to help select a method of normalization.

Suppose that we have J replicated arrays. If we assume that
varðŶgijÞ ¼ �2

g , which are the same across J arrays, then we

would pool the variability information from other arrays. This

leads to a pooled estimator of �2
g by

s2W;g ¼
1

JðI� 1Þ

XJ
j¼1

XI

i¼1

ðŶgij � �YgjÞ
2: ð13Þ

The above estimate ignores the correlation among duplicated

genes. If within-array replications have a common correlation

�g ¼ � and observations across arrays are independent, Smyth
et al. (2005) introduced the residual maximum likelihood

(REML) estimator of �2
g as follows:

s2g ¼
1

IJ� 1

n ðJ� 1Þs2B;g
1þ ðI� 1Þ�̂

þ
JðI� 1Þs2W;g

1� �̂

o
; ð14Þ

where s2B;g ¼ I
PJ

j¼1ð
�Ygj � �YgÞ

2=ðJ� 1Þ with �Yg ¼
PJ

j¼1
�Ygj=J is

the between-arrays variance and �̂ is an estimate of �. They also
proposed the REML estimation of �̂ by

�̂ ¼

PG
g¼1 s

2
B;g �

PG
g¼1 s

2
W;gPG

g¼1 s
2
B;g þ ðI� 1Þ

PG
g¼1 s

2
W;g

:

They argued further that the degree of freedom of s2g is (IJ� 1).

4.2 Smoothing estimator

The degree of freedom for the within-array estimate s2W;g of the

variance is still limited. As the variability of c-DNA microarray

measurements is related to the intensity level (Fan et al., 2004;

Tseng et al., 2001), one can pool the information of variability

from expression profiles with similar intensity levels (Fan et al.,

2004). This results in a non-parametric estimate of the intensity-

specific variance function �2ð�Þ from the non-parametric

regression model:

Ŷgi ¼ �g þ �ðXgiÞ�gi; i ¼ 1, . . . ; Ig; g ¼ 1, . . . ;N: ð15Þ

See also (5) with the array index j suppressed. The procedure

of Fan et al. (2004) is to first smooth fŶgig on fXgig by using

a local linear estimate, which is really a smoothing estimator of

the scatter plot fðXgi; ŶgiÞg, to obtain an estimate of �g by

regarding it as a smooth function of the log-intensity Xgi, and

then smooth the squared residuals fðŶgi � �̂gÞ
2
g on fXgig to

obtain an estimate of the intensity-specific variance function

�2ð�Þ. The fundamental assumption in Fan et al. (2004) is that

�g is basically a smooth function of Xgi. When this assumption

is not valid, the estimator will be biased.
The bias issue in Fan et al. (2004) can be significantly reduced

when the within-array replications are available as in (15).

Consider those genes with I replications. Replacing �g by its

unbiased estimate �Yg ¼
PI

i¼1 Ŷgi=I, we have the variance of the
residual

EðŶgi � �YgÞ
2
¼ ðI� 1Þ2�2ðXgiÞ=I

2 þ
X
j 6¼i

�2ðXgjÞ=I
2:

When the variability of log-intensities is not large, we can

approximate Xgj by its average �Xg. Owing to the smoothness

assumption, we have

varðŶgi � �YgÞ � ðI� 1Þ�2ð �XgÞ=I: ð16Þ

Letting r2g ¼
PI

i¼1ðŶgi � �YgÞ
2=ðI� 1Þ be the sample SD,

we have

Er2g � �2ð �XgÞ:

Therefore, the intensity-specific variance �2ð�Þ can be

estimated by smoothing the pairs fð �Xg; r
2
gÞ : g ¼ 1, . . . ;Gg,

resulting in an estimated function �̂2ð�Þ. Hence, our estimate

of �2
g is

ŝ2g ¼ �̂2ð �XgÞ:

The approach is particularly appealing to the customized

arrays, in which the variability of intensities is not large and the

replicated spots are available. See Section 5.3.

4.3 Empirical Bayes estimator

With within-array replications, we have two estimators: REML

s2g and the intensity-specific estimator ŝ2g. One naturally uses the

intensity-specific estimator ŝ2g to augment the REML estimator

s2g. One simple way to do this is the following empirical Bayes

shrinkage estimator:

~s2g ¼
ðIJ� 1Þs2g þ dŝ2g

IJ� 1þ d
; ð17Þ

where d is the degree of freedom of ŝ2g. The estimator (17) is the

Bayes estimator with the inverse Gamma prior with the prior

mean ŝ2g and prior degree of freedom d. Since the prior

parameters are estimated from the data, (17) is indeed an

empirical Bayes estimator.
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The degree of freedom of the non-parametric estimator ŝ2g is
often estimated by the effective sample size, which is the inverse

of the asymptotic variance of the kernel local linear regression

estimator. For example, if the kernel local regression estimator

is used, then, we have

d ¼ the number of local data=ð2kKk2Þ;

where K is the kernel function used in the smoothing . For

example, in the LOWESS smoother, the kernel function is
70
81 ð1� jxj3Þ3Iðjxj � 1Þ.

Note that when the within-array variance s2W;g in (13) is used

in (17), the factor (IJ� 1) should be replaced by IðJ� 1Þ. In

addition, the intensity-specific estimate of variance is usually
not as reliable as the within-array variance s2W;g, the constant d

can be replaced by some smaller numbers to reduce somewhat

of its influence.

5 SIMULATIONS AND APPLICATIONS

In this section, we first use the simulated data set to illustrate

the validity and the power of our proposed validation tests. In

particular, the advantages of the aggregated standardization

tests T3 and T4 are demonstrated. The three real data analyses

illustrate the methodological power of our approaches.

5.1 Simulation

In each simulation, we generate J¼ 4 arrays from model (3)

with G ¼ N ¼ 2000 genes, each having I¼ 3 replications

randomly assigned over the 48 blocks. The details of simulation

scheme for this example are summarized as follows:
ag: The expression levels of the first 150 genes are generated

from the standard double exponential distribution. The

rest are 0’s. These expression levels are the same over four

arrays in each simulation, but may vary over simulations.
b: The 48 parameters for the block effects bj in array j are all

set to b, which is given by

b ¼ð�0:15 � 0:3 � 0:15 0:01 � 0:01 0:04 0:07 0:08 0:08 0:23

0:22 0:09 0:11 0:24 0:28 0:24 0:07 0:22 0:19 0:15� 0:03

� 0:05 � 0:02 0:03 � 0:14 � 0:04 � 0:18 0:06 � 0:05

� 0:02 � 0:17 � 0:02 0:08 0:08 � 0:04 � 0:16 0:04

0:01 � 0:05 � 0:12 0:07 � 0:19 � 0:03 � 0:15

� 0:07 � 0:22 � 0:11 � 0:22ÞT:

These parameter values are taken from the estimates in

Ma et al. (2006).
X: The intensity is generated from a mixture distribution:

with probability 0.8 from probability distribution

0:0004ð16� xÞ3Ið6 < x < 16Þ and 0.2 from the uniform

distribution over ½4; 16�.
mj ð�Þ: Set the function mjðXÞ ¼ 5ð0:3592�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� 4Þ=32

p
Þ, whose

expectation with respect to X is approximately zero.
bg: For each given gene, its associated block is assigned at

random at one of 48 print-tip blocks.

" : "gij is generated from the standard normal

distribution with mean zero and variance

�2ðXgiÞ ¼ 0:15þ 0:015ðXgi � 9Þ2IfXgi > 9g.
This is a heteroscedastic model with small block effect and

intensity effect. Three normalization methods are used: Global

normalization, LOWESS normalization using all blocks and

the SLIM normalization (Fan et al., 2004). They are applied to

200 pseudo-data sets, each having J¼ 4 arrays, giving a total of

800 arrays.We drew 200 genes at random from the 2 000

different genes as the testing set, and the remaining genes as the

learning set.
We first apply the validation test statistic T3 with genewise

variances estimated by the REML estimators (14) to check the

effectiveness of the three normalization methods over 200

pseudo-data sets, which comprise of 800 pseudo-arrays. The

distributions of the test statistic jT3j based on the three

normalization methods are presented in Figure 1. They are

well separated (Fig. 1a). First of all, T3 for the global

normalization is the same that with no normalization, which

by far the largest. This shows the global normalization is the

worst method for the data sets. Indeed, the corresponding 800

P-values are all zero, which shows the power of validation test

is 100%. The LOWESS normalization using all blocks ignores

the small block effects b. The resulting statistics T3 from 200

simulations are smaller than those based on the global

normalization, but are stochastically larger than those based

on the SLIM normalization, which accounts for these small

block effects. This shows that the LOWESS normalization

ignoring block effect is not as effective as the SLIM, but is more

effective than the global normalization. Figure 1 also depicts

the distribution of the 800 P-values of the LOWESS and SLIM

method. The P-values of SLIM follow nearly a uniform

distribution, which indicates that systematically biases have

been effectively removed. On the other hand, for a portion of

arrays, the LOWESS normalization is inadequate. This

demonstrates the power of the validation: even ignoring small

block effects, the test statistic T3 is able to detect these small

systematic biases.
After demonstrating the power of the test statistic T3, we now

examine the accuracy of the null distributions T1, . . . ;T4 using

SLIM as the method of normalization. Since the correct method

is used in the normalization for the pseudo-data, the estimation

errors come from two sources: estimation of block and intensity

effect and estimation of genewise variance by (14). First of all,

without normalization, all validation test statistics T1, . . . ;T4

report zeros P-values for all realizations. This indicates the

sensitivity of these tests.When the SLIM is used to normalize the

data, if the normalization method is effective and the null

distributions are accurate, the P-values follow the uniform

distribution on the interval ½0; 1�. Figure 2 depicts the P-values

based on the SLIM normalization. The distributions of P-values

based on T3 are reasonably uniform. This shows that both the

normalization method is effective and the null distribution is

accurate for the test statistic T3. However, the distributions of T2

and T4 have large deviations from the uniform distribution,

which indicates the estimation errors from the REML estimators

(14) of genewise SDs. These deviations have greatly been

mitigated by correcting the REML estimators to the unbiased

estimators (12).

5.2 Application to human placenta data

A collection of human placenta cDNAs comprising 7042 clones

was identified and used as the probe set for cDNA microarray
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fabrication in this study (Ma et al., 2005). Three kinds of RNA

samples were used. These include the common reference RNA

derived from the probe set (PS) in equal amounts representing

artificial RNA produced by in vitro transcription, the

‘Universal Human Reference RNA’ from Stratagene, which

is comprised of 10 different cell lines and human full-term
placenta RNA. The original goal of the study was

to evaluate the performance of the PS RNA as a reference

RNA in comparison with that of Stratagene’s universal

reference RNA.
For the sake of studying the normalization and validation

tests, we only compare the ‘Universal Human Reference’ RNA

with human placenta RNA in this study. Gene expression

values were obtained through direct hybridizations between

these two kinds of RNAs. There are four slides, including two

dye-swapped slides. Each clone was printed three times on
different blocks in each slide. There are 48 blocks on each

array. After preprocessing that filters low quality spots, there

remained 2149 genes that have three replications. Our analysis

focuses on this subset. We compared the effectiveness of

four normalization methods: Global, LOWESS, SLIM and

aggregated SLIM by using test statistics T3 and T4. One

hundred different genes were selected as the validation set,
while the remaining 2049 genes were used to estimate the

parameters.

The key assumption of the LOWESS method is that up- and
down-regulated genes’ expressions are symmetrically distribu-

ted around 0, which is usually not the case for genes

investigated in placenta tissue (Ma et al., 2005). Figure 3

(a)–(d) compares the effectiveness of the four normalization

methods using the validation test statistics T3 and T4. The

genewise variances are estimated by (14). The results show
clearly that normalizations are needed for each array.

In addition, the blockwise LOWESS normalization is inade-

quate except the fourth array at significant level 5%.

The outcomes of validation tests show that we can choose

either SLIM or aggregated SLIM to normalize the log-ratios

for each array.

5.3 Application to interferons data using customized

arrays

An important property of interferons (IFNs), a cytokine, is

their anti-tumor activity. IFNs have efficacy in the treatment of

several types of solid tumors carcinomas. Interestingly, it has

been reported that IFN-� has greater anti-tumor effects than

IFN-� on melanoma. One probable mechanism for the

different effects may be the different affinity of IFN-� and

IFN-� binding to the IFN receptors. Another possibility may

be the differences in intracellular signaling. To address whether

different signal pathways are involved in IFN-� and IFN-

�-mediated anti-tumor activity, customized c-DNA chips are

designed to include IFN stimulated genes and genes involved in

multiple pathways. Gene expression changes induced by IFN-�
and IFN-� were investigated and compared by using the

customized c-DNA microarrays.
The customized c-DNA microarrays provides an ideal

platform for our validation tests. Usually, only several

hundreds of genes of primary interest are monitored for the

changes of expression profiles and these genes are often

duplicated several times. For our particular applications, 768

genes that might be induced by IFN are printed on the 16

blocks with 12 rows and 12 columns of spots in each block.

These 768 genes are duplicated 3 times. The three replications

of each gene reside in the same row in the same block but

adjacent columns. The expression profiles of these 768 genes

with IFN-� or IFN-� stimulations are compared with those

without stimulations. This results in two customized micro-

arrays, one with INF-� stimulation and the other with INF-�
stimulation, each having with 3�768 spots. After some

preprocessing that filtered the data with low quality, there

were 572 genes left for further analysis.
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Fig. 1. (a) Distributions of jT3j before normalization (right) and after

normalization using SLIM (left). (b) Distribution of jT3j after the

LOWESS normalization without accounting small block effects. (c) and

(d) Distributions of P-values of the validation test T3 after normal-

ization using SLIM (left panel) and LOWESS (right panel) methods.

P-values based on test T3 before normalization are all zero.
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after the SLIM normalization. (a)–(d) Distributions of P-values for test

statistics T1;T3;T2 and T4 after the SLIM normalization. (e) and (f)

Distributions of P-values for test statistics T2 and T4 calculated by using

unbiased estimators of genewise SD (13). The distribution of T3 is

somewhat more uniform than that based on T1. The same conclusion

applies to T4 and T2, both using the REML estimators and unbiased

REML estimators.
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To examine the necessity and effectiveness of normalization,
we randomly selected 50 genes as the test set; the remaining
522 genes were used as the learning set. Three normalization

methods are employed: Global, LOWESS and SLIM normal-
izations. Due to the specific designs of the replications,

the block effect is not estimable. The genewise variance are
estimated by using the empirical Bayes method in Section 4.3—
the variance estimates from two arrays are not aggregated.

Table 1 depicts the P-values using the test statistics T1, . . . ;T4.
From the table, we conclude that there is no need for

normalization since all of the P-values for test statistics are
high for both slides and for all methods. Note that the P-values
by using the SLIM normalization are a little bit higher than

those using the Global normalization, and they are larger than
the P-values using the LOWESS method. That is because the

fundamental assumption for LOWESS method—up- and
down- regulated genes are about the same—are not substan-
tiated here.

5.4 Application to human total RNA samples using

Agilent arrays

Our third example comes from the Microarray Quality Control

(MAQC) project (Patterson et al., 2006). The MAQC project
studies the reproducibility, sensitivity and specificity of the

microarray data across different platforms and sites. It
compared two RNA samples, Stratagene Universal Human
Reference total RNA and Ambion Human Brain Reference

total RNA using different microarray technology. Our study

focuses only on the RNA samples generated at three test sites

using Agilent platform. At each site, 10 Agilent two-color

microarrays were processed with five arrays for each dye

configuration, which assayed a total of 30 microarrays.

Following Patterson et al. (2006), we excluded two outlier

microarrays based on single microarray quality metrics,

resulting in 28 microarrays. After preprocessing, we obtained

21 767 genes from a total of 43 931 and found four genes each

having 10 replications, randomly located on the microarray.
For our validation test, gProcessedSignal and

rProcessedSignal values from Agilent’s Feature Extraction

software were used as input to calculate the test statistics. If

the genewise variance is estimated by using (14), all P-values are

at least 99.99%, indicating the proper normalization of all

Agilent arrays. Even using the most stringent estimation of

genewise variance (13), almost all the microarrays pass the

validation test at significant level 1% except for one array

AGL-3-D3 at the test site 3. See Table 2. The results show the

data processed by Agilent software are properly normalized

and reliable. These are in line with the conclusion of the MAQC

project.

6 CONCLUSION

Motivated by the urge of measures for comparing different

normalization methods, we proposed four validation tests to

evaluate the necessity and effectiveness of normalization

methods, relying on the replicated clones. They are based on

the standardized differences of expression profiles among

replicated clones aggregated over different genes, resulting in

the test statistics T1 and T2. These tests depend on genewise

variances and SDs and hence cannot be used to compare the

effectiveness of the normalization without estimation of these

genewise variances. This leads us to consider the (unweighted)

differences of expression profiles among replicated clones

aggregated over different genes, standardized after aggregation,

resulting in the test statistics T3 and T4. The unscaled test

statistics T3 and T4 can be used to compare the effectiveness of

normalization without estimating genewise variance (which

itself depends on selecting a method of normalization). The

aggregated standardization tests T3 and T4 depend on the

aggregated SD and variance, which can be more precisely
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Fig. 3. The P-values for validation tests T3 and T4, based on the human

placenta data, under four different normalization approaches: Global

(labeled ‘1’), LOWESS (labeled ‘2’), SLIM (labeled ‘3’), and aggregated

SLIM (labeled ‘4’) methods. The y-axis is � log10ðP-valueÞ. The dark

gray columns are P-values for T3, while the light gray ones are for T4.

The results for four arrays are plotted in (a) – (d). The lines correspond

to 5% significance level. The P-values for Global normalization are

highly statistically significant at level 5% for all four arrays, indicating

the ineffectiveness of the method. The LOWESS normalization method

improves the P-values a lot but still are statistically significant at level

5% except the fourth array. The P-values based on SLIM and

aggregated SLIM methods show that the systematic biases due to the

variation of experimental conditions have been effectively removed by

either of these two methods. Therefore, the resulting log-ratios can be

used for the downstream statistical analysis.

Table 1. P-values for T1, . . ., T4 based on human placenta data

Statistics P-values

Global LOWESS SLIM

Slide 1 T1 0.3294 0.2857 0.3333

T2 0.3979 0.3139 0.4044

T3 0.5431 0.5155 0.5450

T4 0.3947 0.3097 0.4004

Slide 2 T1 0.4704 0.4966 0.4730

T2 0.6952 0.6615 0.6964

T3 0.3012 0.2261 0.3009

T4 0.4322 0.3913 0.4318
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estimated than the genewise SD and variance. As a result, the
null distribution of the test statistics T3 and T4 can be more

accurately approximated.
We have also demonstrated that the within-array replications

are essential for estimating the genewise variance. A novel

non-parametric approach is proposed, which aggregates var-
iance information from genes with similar intensity level. Several
innovative approaches are proposed to enhance the accuracy of

the estimation of the genewise variance. These new methods can
also be used to improve the power of selecting significantly
differently expressed genes (Cui et al., 2005; Smyth et al., 2005).

Our simulation studies show convincingly the power of the
validation tests and their validity. The applications to three real
data sets demonstrate the methodological power of our
proprietary methods in choosing a normalization method and

in assessing whether the systematic biases due to variations in
the experimental conditions have been properly removed. The
customized array provides an ideal platform for the applica-

tions of our proposed approaches. Furthermore, our idea does
not restrain to the two-color arrays. As long as replicated genes
exist, we could apply our validation test to check the necessity

and effectiveness of normalization. The validation tests could
have been reliably applied the one-color Affymetrix GeneChip
arrays, if they were within-array replications. Without such

replications, we need to aggregate information across arrays.

Assuming the absence of the gene and array interactions, our

validation tests can be applied to the Affymetrix array to check

the necessity and effectiveness of normalization, by treating

each array as a block in a synthetic super-array.
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