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ABSTRACT

Motivation: The analysis of spotted cDNA microarrays involves scan-

ning of color signals from fluorescent dyes. A common problem is that a

given scanning intensity is not usually optimal for all spotted cDNAs.

Specifically, some spots may be at the saturation limit, resulting in poor

separation of signals from different tissues or conditions. The problem

may be addressed by multiple scans with varying scanning intensities.

Multiple scanning intensities raise the question of how to combine

different signals from the same spot, particularly when measurement

error is not negligible.

Results: This paper suggests a non-linear latent regression model for

this purpose. It corrects for biases caused by the saturation limit and

efficiently combines data from multiple scans. Combining multiple

scans also allows reduction of technical error particularly for cDNA

spotswith low signal. Theprocedure is exemplified using cDNAexpres-

sion data from maize.

Availability: All methods were implemented using standard pro-

cedures available in the SAS/STAT module of the SAS System.

Programming statements are available from the first author upon

request.

Contact: piepho@uni-hohenheim.de

Supplementary information: The supplementary data are available

at Bioinformatics online.

INTRODUCTION

When scanning fluorescent spot signals (Cy3/Cy5) from cDNA

microarrays, the choice of an optimal scanning intensity is critical.

A particular choice of scanning intensity may be optimal or near-

optimal only for a subset of the spotted cDNAs, while other cDNAs

are at the detection limit or saturation limit (Lyng et al., 2004).
For this reason, it has been suggested to scan the same microarray

repeatedly using different scanning intensities. If there are

G genes and S scanning intensities, the procedure results in a

G · S array of signals. One possible route for analysis is to select

an optimal scanning intensity for each cDNA spot and then base

the analysis for a spot only on the signal detected at this one intens-

ity. This approach has several drawbacks. Choice of the optimal

scanning intensity is difficult, and some kind of automated analysis

is needed. Also, looking at several scanning intensities simultan-

eously exacerbates the multplicity problem (Korn et al., 2004).

Moreover, using only data from one intensity is a waste of infor-

mation, particularly when error variance is large. A more promis-

ing approach is to integrate the results of multiple scans into a

single expression value per gene and dye (Romualdi et al., 2003;
Garcia de la Nava et al., 2004). An obvious procedure is to com-

pute, for each cDNA spot, some kind of average across scanning

intensities. The simple average is not necessarily the best method

for doing this, since signals may be more informative for some

scanning intensities than for others. Specifically, for spots with

signals near the saturation threshold, the information content is

relatively low, while signals with intermediate intensity are more

informative.

The central idea of this paper is to devise an adjustment for

observations near the saturation limit based on a statistical

model. The main assumption is that the observed signal at a

given scanning intensity and the amount of expression product

are connected by some non-linear relationship. The amount of

the gene product enters the model as a latent variable, thus giving

rise to a non-linear latent regression model. The approach is exem-

plified using cDNA gene expression data from maize.

MATERIALS AND METHODS

The data

The data are from a large project aimed at unraveling the molecular causes of

heterosis in maize. Details of the experimental design are described in Keller

et al. (2005). Kernels of the maize inbred lines UH002, UH005, UH250,

UH301, and their eight reciprocal hybrids were germinated on filter paper

(20 · 70 cm Grade 603 N, Sartorius, Göttingen, Germany) in a phytocham-

ber at 26�C, with a 16 h light, 8 h dark cycle and 60% humidity. RNA was

extracted from primary roots 3.5 days after germination using Trizol reag-

ent (Invitrogen, Karlsruhe, Germany) and the Oligotex mRNA Kit (Qiagen,

Hilden, Germany), according to the manufacturer’s instructions. mRNA

concentrations were quantified with RiboGreen (Molecular Probes,

Leiden, Netherlands) using a fluorescence spectrophotometer F-2000

(Hitachi, Japan). mRNA was transcribed into cDNA using random hexamer

primer and reverse transcriptase ‘SuperscriptII’ (both Invitrogen). cDNA

was indirectly labelled with Cy3 or Cy5 fluorescent dye (Amersham Bios-

ciences, Little Chalfont, UK) and hybridized with a 12.160 element microar-

ray chip (Generation II VersionB) generated at the Iowa State Microarray

Facility (Ames, IA; http://www.plantgenomics.iastate.edu/maizechip/), as

described in Hedge et al. (2000). We analyzed a total of 49 arrays. The

four parents were replicated more often than the hybrids because this optim-

ized accuracy for estimating heterosis (Keller et al., 2005).�To whom correspondence should be addressed.
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Scanning of the cDNA arrays was performed with a GMS 418 Array

Scanner (Genetic MicroSystems, Woburn, MA). Each scan was obtained

with a laser power of 90%. A series of six scans, in ascending order of PMT

gain, was performed at 10 mm resolution. Initial settings for Cy3 and Cy5

were �10–20% and were increased by 5 or 10% increments. Fluorescent

signal intensities were determined and quantified using ImaGene 5.6

(Biodiscovery, Inc., Mariana Del Rey, CA). In total 11 446 spots of this

maize microarray chip were subjected to data analysis.

Scanning intensities were log2-transformed. For spots with signals at all

six scanning intensities, we computed the mean signal on the log-scale and

then plotted each log-signal versus its corresponding spot mean (Fig. 1).

The plot suggests that there is a marked saturation level between 15 and

16 units, which is reached for a number of spots at the highest scanning

intensities. Also, in the region of linear response, the variance tends to

increase towards lower signal intensities. The relationship between any

two intensities is linear except for the area around the detection limit.

Below the detection limit, the scatter of spots runs parallel for all intensities,

and the slope of each scatter is very close to unity.

The model

The strong linearity below the saturation limit suggests that up to a region

close to the saturation limit it is reasonable to assume a linear relationship

between expected signal (m) and a latent variable (h) related to the amount

of gene expression product and the scanning intensity. The parallelism

of scatters for the six intensities in Figure 1 further suggests that an additive

model of the following form may be used:

hij ¼ aj þ gi‚ ð1Þ

where hij is the latent value for the i-th spot at the j-th scanning intensity, aj

is the main effect of the j-th intensity ( j ¼ 1, . . . , J ¼ 6), subject to the

identifiability constraint a6 ¼ 0, and gi is the main effect of the i-th spot

(i¼ 1, . . . , I¼ 11 446). The rationale for this model choice is that a plot of hij

versus the spot mean (hi1 + hi2 + hi3 + hi4 + hi5 + hi6)/6 will be linear with

slope equal to unity, which corresponds to the pattern in Figure 1.

It appears to be difficult to include the deviant behavior near the

saturation point in a single functional model, so one may resort to a

segmented regression model (Seber and Wild, 1989; Schabenberger and

Pierce, 2002). The simplest such model, also known as the ‘broken stick’

model, has two linear regression lines with different slopes connected at the

change point. This has the undesirable property of an abrupt change in

slope at the change point. A model with a smooth non-linear transition

between linear part and an asymptotic plateau may be obtained by fitting

an exponential function near the saturation limit. The model can be written as

mij ¼ hij when hij < f and ð2aÞ

mij ¼ � � b exp ð�ghijÞ when hij � f‚ ð2bÞ

where mij is the expected signal for the i-th spot at the j-th scanning intensity,

� is the saturation limit, f is the break point, and b and g are regression

parameters. The model is depicted in Figure 2. The observed signal is

modelled as

yij ¼ mij þ eij‚ ð3Þ

where eij is a random measurement error term distributed with zero mean.

We require a smooth transition at the break point hij ¼ f in the sense

that function value and first derivative of the connected segments must

coincide (Seber and Wild, 1989). This requirement gives rise to two

constraints on the parameters. Specifically, in order to have a smooth trans-

ition in the first derivative, we require

bg exp ð�gfÞ ¼ 1 , b ¼ ½g exp ð�gfÞ��1: ð4Þ

In order to have no jumps at the change point, we further require

f ¼ � � b exp ð�gfÞ , f ¼ � � ½g exp ð�gfÞ��1
exp ð�gfÞ ¼ � � g�1:

ð5Þ

Thus, apart from intensity effects aj and spot effects gi, only the effects � and
g need to be estimated.

ALGORITHM

One might consider fitting model (2) directly in a single step by

non-linear regression. This would be computationally very expens-

ive, however, because the dimension of the problem nearly equals

the number of spots (�12 000 in the case of the maize cDNA

microarrays used in this paper). The space required to hold and

Fig. 1. Plot of signals at six different scanning intensities (yij) versus spot
mean (�yyi*) for 11 664 cDNA spots on chip 288. Genotype: UH005x301.

Intensities: 20, 30, 40, 50, 60, 70. Channel: Cy5.

Fig. 2. Sketch of segmented model in Equation (2).
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manipulate the design matrix and the data usually exceeds the

memory available on standard PCs. Even if memory permits fitting

of the model by standard non-linear model procedures, computing

time will typically be unacceptably long for routine use. We there-

fore sought a simple alternative.

The main idea is to fit the model by alternating least squares

(Kroonenberg and De Leeuw, 1980), keeping one set of parameters

fixed, while estimating the other, and vice versa. The first set of

parameters, denoted as intensity set, consists of the intensity effects

aj and the two non-linear parameters � and g, while the other set,

denoted as spot set, contains the spot effects gi. When the spot set is

kept fixed, optimization is with respect to only J + 1 parameters,

which is computationally inexpensive. When the intensity set is kept

fixed, there are I parameters to be estimated. The key idea is that

each of these parameters can be fitted individually, because condi-

tionally on the intensity set, all information on gi is confined to the

data of the i-th spot. The algorithm suggested in this paper altern-

ates between the two sets, fitting parameters of the one set, while

keeping parameters in the other set fixed. Each of the alternating

optimization steps is itself trivial computationally. The total com-

putational cost is governed by the total number of alternating steps.

Our experience is that several dozens of iterations are needed until

convergence.

The signal versus spot mean plot (Fig. 1) shows some hetero-

geneity of variance, the variance increasing with decreasing expec-

ted signal. Inspection of Figure 1 reveals that heterogeneity is

mainly a problem for spots with weak mean signal. One can

model the variance as a function of the spot effect and re-

estimate all parameters by weighted least squares (WLS), possibly

iterating between estimation of the expected signal and the variance

(Carroll and Ruppert, 1988). We suggest to use only one or two

iterations, following the suggestion by Carroll and Ruppert (1988).

The scatterplot of variance (log-scale) versus spot effect may be

somewhat irregular (Fig. 3), so we use locally weighted smoothing

splines (LOESS; Cleveland, 1979) for fitting the variance function.

A further aspect of multiple scan data is that occasionally a signal

may be missing. Thus, any proposed method should be able to

handle unbalanced data in an efficient way. Standard procedures

for linear and non-linear regression (Searle, 1987; Seber and Wild,

1989) are well suited for this task. We initialize spot and intensity

effects based on a fit of the additive model in Equation (1). To speed

up computing time, intensity effects are estimated by absorbing

spot effects into the least squares equations (Engel, 1990; Harville,

1997; SAS Institute, 1999; see Appendix A in the online Supple-

mentary Data). The parameter g, which appears in the exponent

of the non-linear response function, is the most sensitive parameter

in iterations. Therefore, we determine convergence based on the

relative change in this parameter.

The following algorithm is proposed to fit model (2):

(1) Initialize intensity and spot effects by fitting an additive two-

way model [Equation (1)] to the data. When fitting the model,

absorb spot effects to save computing time. Initialize � by

max(yij). For g, try several starting values between 0 and 5.

Initialize weights wi ¼ 1. Set Z ¼ 0. Set Zmax equal to the

desired number of WLS steps.

(2) Keep the spot set (gi) fixed. Estimate the intensity set (�, g, aj)

byweighted non-linear least squares using weightswi. Use the

whole data set in this optimization.

(3) Keep the intensity set (�, g, aj) fixed and estimate the spot set

(gi) by nonlinear least squares. Perform the optimization

separately for each spot.

(4) If the relative change in the estimate of g is smaller than some

small value e, proceed to step (5). Otherwise return to step (2).

(5) If Z ¼ Zmax, terminate the algorithm. Otherwise, do the

following. Based on last fit, compute least squares residuals.

From the residuals, compute the sample variance per spot. Fit a

LOESS curve to predict log-variance from spot effects. Based

on the predicted variance, compute weights wi per spot as the

inverse of the variance. Set Z :¼ Z + 1 and go back to step (2).

In order to evaluate the algorithm, we compared our method with

a standard analysis based on a single scan. For each array, we

selected the scan intensity that yielded the best separation among

genotypes based on visual inspection, thus mimicking a procedure

likely to be applied in practice when multiple scans are available.

The data were analyzed using a mixed model approach described in

detail by Keller et al. (2005). We tested pairwise contrasts using a

Wald-type t-test based on the mixed model fit. We compared

P-values of these tests obtained for single-scan data and multiple

scans. The P-value, which assesses the significance of a test, is a

measure that integrates accuracy of a method: If compared with a

standard method P-values of a new method are decreased, this

indicates increased accuracy of the new method.

IMPLEMENTATION

We used procedures of the SAS system for all computations (SAS

Institute, 1999). Non-linear regression was performed with the

NLIN procedure. The LOESS fit for the logarithmically transformed

sample variance was computed using the LOESS procedure. Pro-

gramming statements are available from the first author upon

request.

RESULTS

The plot of logarithmically transformed variance of residuals versus

spot effect shows marked heterogeneity of variance. The plot for

Fig. 3. Plot of logged sample variance of residuals from least squares fit of

model (2) versus spot effect estimate with LOESS fit for chip 288. Genotype:

UH005x301. Intensities: 20, 30, 40, 50, 60, 70. Channel: Cy5.
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example shown in Figure 3 also indicates that the variance stabilizes

for high signal values. The weighted estimates of the intensity

effects for one array are reported in Table 1. The small standard

errors support our claim that intensity effect estimates can approx-

imately be regarded as known. The threshold is estimated as

�̂� ¼ 15:698, while ĝg ¼ 1:999. The resulting estimate of the break-

point is f̂f ¼ 15:1977. For spots near the saturation limit, we com-

puted estimates �̂hh�hhi* based on the fitted model and compared these

with the simple spot means �yyi* (Fig. 4). It is seen that the model-

based adjustment results in an upward shift compared with the naı̈ve

spot means. We also plotted estimates of mij versus �mmi* for all six

intensities (Fig. 5). The resulting curves closely resemble the plot of

yij versus �yyi* (Fig. 1), suggesting that the model fit is very good.

For 12 contrasts we evaluated the P-values of t-tests based on

single and multiple scans. In most cases, multiple scans led to more

significances (Table 2). For two contrasts, we plotted P-values of all
spots for both analyses. When both tests yield identical result, all

spots should fall on a straight line with slope equal to unity. The

examples in Figures 6 and 7 show two cases, where P-values of

multiple scans were reduced compared with single scans, thus yield-

ing more significant results.

DISCUSSION

The motivation for developing the method proposed in this paper

was to address the problem of scanning spots near the saturation

limit in the presence of measurement error. Some alternative sug-

gestions have been made on how to use multiple scans to reduce

variability of microarray expression data. Our approach is novel in

that non-linearity near the saturation limit is explicitly modeled,

thus allowing an unbiased adjustment for saturated spots. Also,

heterogeneity of variance, which was dramatic in the example

used in this paper, is accounted for by a WLS approach. Essentially,

our non-linear model linearly extrapolates the observed signal

beyond the saturation limit and estimates what would have been

observed in the absence of a saturation limit (Garcia de la Nava

Table 1. Parameter estimates of intensity effects aj and nonlinear

parameters � and g for chip 288

Parameter Estimatea Standard error

a1 �5.035 0.000745

a2 �3.744 0.000745

a3 �2.655 0.000745

a4 �1.682 0.000746

a5 �0.797 0.000748

� 15.598 0.00900

g 1.999 0.1024

Genotype: UH005x301. Intensities: 20, 30, 40, 50, 60, 70. Channel: Cy5.
aBy WLS, using LOESS fit of variance function.

Fig. 4. Plot of model-based spot mean �̂hh�hh i* versus simple spot mean �yyi* for

spots near the saturation limit (chip 288). Genotype: UH005x301. Intensities:

20, 30, 40, 50, 60, 70. Channel: Cy5.

Fig. 5. Plot of estimates of mij versus �mm i* for all six intensities for chip 288.

Genotype: UH005x301. Intensities: 20, 30, 40, 50, 60, 70. Channel: Cy5.

Table 2. Percentage of spots significant at a ¼ 5% (not adjusted for

multiplicity) for twelve pairwise contrasts among parents and hybrids.

Contrast among genotypes Percentage significant

Single scan multiple scans

(1) UH005x005 versus UH005x301 4.44 5.32

(2) UH005x005 versus UH301x005 1.09 1.13

(3) UH005x301 versus UH301x301 0.74 0.50

(4) UH301x005 versus UH301x301 0.86 0.91

(5) UH002x002 versus UH002x250 4.48 5.61

(6) UH002x002 versus UH250x002 9.28 10.03

(7) UH002x250 versus UH250x250 7.95 13.38

(8) UH250x002 versus UH250x250 7.14 9.92

(9) UH002x002 versus UH002x301 12.75 11.22

(10) UH002x002 versus UH301x002 11.19 9.49

(11) UH002x301 versus UH301x301 5.54 6.69

(12) UH301x002 versus UH301x301 5.49 7.06
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et al., 2004). The procedure requires multiple scans at different

scanning intensities.

A main issue addressed by our method is non-linearity near the

saturation limit and the difficulty of determining whether or not a

spot signal is at the saturation limit. The difficulty arises from the

presence of measurement error. If one could unequivocally identify

observations in the saturation region (hij > f), one could delete

these and fit the additive model (2a) to the remaining data. Provided

for each spot at least one observation obeys the inequality hij > f,

one could thus obtain unbiased estimates of spot effects gi. In
practice, this procedure may be difficult to implement when meas-

urement error is not negligible at the saturation limit, as was the case

for the maize data (Fig. 1). Correct classification of an observation

as being at the saturation limit is difficult, since both hij and f are

not directly observable, and one is likely to miss some signals for

which hij > f, while some signals are kept for which hij < f. False

classification of observations owing to measurement error may yield

a downward bias for spots close to the saturation limit.

Romualdi et al. (2003) propose to use either the maximum or the

mean pixel-intensity of several scans for further analysis, arguing

that the detection of differentially expressed genes can be consid-

erably enhanced. However, no correction for saturated pixels is

provided. Lyng et al. (2004) estimate intensity effects as the

mean ratio of untransformed signals at two scanning intensities,

assuming a constant ratio across spots not at the saturation limit.

This is essentially equivalent to our assumption of additive intensity

effects on a logarithmic scale. The approach by Lyng et al. (2004)
allows only two scanning intensities, which may not be enough to

accommodate optimal scanning intensities for all cDNA spots.

Moreover, their mean ratio estimator does not allow to handle

heterogeneity of variance (see Appendix B in the online Supple-

mentary Data), which appears to be similarly pronounced in their

data as in our maize data. Taking logarithms and working on an

additive scale does not fully resolve the problem. We have demon-

strated, however, how a simple WLS approach can be implemented

to account for heterogeneity of variance.

A correction method for saturation at pixel-level, where a single

scanning of an array is sufficient, is provided by Dodd et al. (2004).
Similar to Lyng et al. (2004), a linear relationship is estimated,

though not between the spots of two scans, but between the pixels

of the Cy3 and the Cy5 channel of a certain spot. Thus the pixel of

the channel, where no saturation is present, is used for calculating

the corrected value for the saturated pixel. The threshold for pixels

regarded as saturated is set at a fixed value, which might introduce

misclassification, as discussed above. Also, when the number of

saturated pixels is high or saturation occurs in both channels, the

performance of the procedure might not be optimal.

Garcia de la Nava et al. (2004) provide an approach that adjusts

signals not only for saturation but for quantization, i.e. the process

of assigning each possible value for the effective amount of hybrid-

ization product a discrete value of signal intensity. Each array is

scanned at two different intensities. Signal intensities of both scans

are related to one another by a linear or a gamma curve using robust

regression. With the parameter estimates a maximum likelihood

approach is used to gain corrected signal values. Variance hetero-

geneity does not seem to be an important issue in their data and

so is neglected.

This paper has focussed on non-linearities near the saturation

limit. In principle, non-linearities could also occur near the detec-

tion limit, though this was not a serious issue with our data. Exten-

sion of our algorithm to cater for non-linearities near the detection

limit is straightforward. One would simply need to add a non-linear

segment at low intensities, yielding a model with three segments:

the middle segment is linear, while the two outer segments are

non-linear. This model would have two additional non-linear

parameters compared with model (2).

With multiple laser scans, photobleaching is a potential

problem, though we did not observe this effect in our experiments.

Photobleaching occurs mainly when scanning intensities are very

high, reducing the emitted signal remaining for subsequent scans.

As a precaution, we therefore always started with the lowest scan-

ning intensity and finished with the highest. While we did not find

evidence of photobleaching with our scans, it should be stressed that

our proposed model will automatically account for such effects.

Assuming that photobleaching affects all spots in a similar way,

Fig. 6. Q–Q plot of P-values (red line) for multiple scans versus single scans

for contrast UH002x250 versus UH250x250 (contrast 7 in Table 2). Black

line: reference line with slope equal to unity.

Fig. 7. Q–Q plot of P-values for multiple scans versus single scans for con-

trast UH005x005 versus UH301x005 (contrast 2 in Table 2). Black line:

reference line with slope equal to unity.
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the intensity effects aj will capture any signal reductions across

spots.

Analysis of the maize data revealed that variance increases dra-

matically as signal intensity decreases (Figs 1 and 3). Thus, repeated

scans are also useful for spots with signals well removed from the

saturation limit in that they provide measurement replication and

thus reduce the standard error of mean signals. Multiple scans

are therefore of benefit not only for spots with very high signal,

for which saturation is a problem, but also for spots with very low

signal, for which measurement error is the primary issue.

Conflict of Interest: none declared.
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