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ABSTRACT

Motivation: Time series expression experiments are an
increasingly popular method for studying a wide range of
biological systems. However, when analyzing these experi-
ments researchers face many new computational challenges.
Algorithms that are specifically designed for time series exper-
iments are required so that we can take advantage of their
unique features (such as the ability to infer causality from the
temporal response pattern) and address the unique problems
they raise (e.g. handling the different non-uniform sampling
rates).

Results: We present a comprehensive review of the cur-
rent research in time series expression data analysis. We
divide the computational challenges into four analysis levels:
experimental design, data analysis, pattern recognition and
networks. For each of these levels, we discuss computational
and biological problems at that level and point out some of the
methods that have been proposed to deal with these issues.
Many open problems in all these levels are discussed. This
review is intended to serve as both, a point of reference for
experimental biologists looking for practical solutions for ana-
lyzing their data, and a starting point for computer scientists
interested in working on the computational problems related
to time series expression analysis.

Contact: zivbj@cs.cmu.edu

1 INTRODUCTION

DNA microarray experiments are usually classified based on
the type of array that is used in the experiment (CDNA and
oligonuclectide arrays) or according to the organism that is
profiled. In this paper, we distinguish between static and
time series experiments. In static expression experiments,
a snapshot of the expression of genes in different samples
is measured, while in time series expression experiments, a
temporal process is measured. Another important difference
between these two types of dataisthat while static datafroma
sample population (e.g. ovarian cancer patients) are assumed
to be independent identically distributed, time series data
exhibit a strong autocorrelation between successive points.
Much of the early work on analyzing time series expres-
sion experiments used methods devel oped originally for static
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data (Spellman et al., 1998; Friedman et al., 2000; Zhu et al.,
2000; Troyanskaya et al., 2001). More recently several new
algorithms specifically targeting time series expression data
were presented. Aswe discussin thisreview, these algorithms
both solve problems that are unique to time series expres-
sion dataand also alow usto fully utilize this data by taking
advantageof itsuniquefeatures. Geneexpressionisatemporal
process. Different proteins are required (and synthesized) for
different functionsand under different conditions. Even under
stable conditions, due to the degradation of proteins, mMRNA
is transcribed continuously and new proteins are generated.
This process is highly regulated. One of the most import-
ant ways in which the cell regulates gene expression is by
using a feedback loop. Some of the proteins are transcrip-
tion factors (TFs). These proteins regulate the expression of
other genes (and possibly, their own expression) by either ini-
tiating or repressing transcription. When cells are faced with
a new condition [such as starvation (Natarajan et al., 2001),
infection (Nau et al., 2002) and stress (Gasch et al., 2000)],
they react by activating a new expression program. In many
cases, the expression program starts by activating afew TFs,
whichinturn activate many other genesthat act in responseto
the new condition. Taking a snapshot of the expression pro-
file following a new condition can reveal some of the genes
that are specifically expressed under the new condition. How-
ever, in order to determine the compl ete set of genes that are
expressed under these conditions, and to determine the inter-
action between these genes, it is necessary to measure atime
course of expression experiments. Thisallowsusto determine
not only the stable state following a new condition, but also
the pathway and networksthat were activated in order to arrive
at this new state.

1.1 Examples of time series expression
experiments

The main purpose of this section is to demonstrate the wide
range of biological questions that time series expression data
can be used to answer. Many of these questions involve
computational aspects, as we discussed in Section 1.2.

Biological systems One of the most extensively studied
systemsisthe cell cycle system. This system plays an import-
ant role in development, cancer and many other biological
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Table 1. Summary of five different time series expression experiments

Reference Method of arrest Duration (min)  Cell cyclelength (min)  Sampling rate
WT apha(Spellman et al., 1998)  Alphamating factor 0-119 64 Every 7 min
WT cdcl5 (Spellman et al., 1998)  Temperature-sensitive cdc15 mutant 10290 112 Every 20 min for 1 h, every
10 min for 3 h, every 20 min
for final hour
WT cdc28 (Cho et al., 1998) Temperature-sensitive cdc28 mutant ~ 0-160 85 Every 10 min
fkhl/fkh2 knockout (Zhu et al., Alpha mating factor 0-210 105 Every 15 min until 165 min, then
2000) after 45 min
yox1/yhpl knockout (Pramilla Alpha mating factor 0-120 60 Every 10 min
et al., 2002)

WT, wild-type. All these experiments were performed to study the cell cycle system in yeast. Note that the sampling rates are not always uniform, and vary between the different
experiments. In addition, the cell cycle duration (the time it takes the cells to divide) differs depending on the experiment condition.

processes, and has thus been extensively studied over the last
four decades (Simon et al., 2001). In Table 1, we present five
different time series expression experiments that were carried
out to study various aspects of thissystem in yeast. At least as
many time series expression experiments were carried out to
study this system in humans (Whitfield et al., 2002). A hum-
ber of other systems have also been studied with time series
expression experiments, including, among others, the circa-
dian clock in mouse and humans (Storch et al., 2002; Panda
et al., 2002).

Genetic interactions and knockouts While an expression
time course of awild-type (WT) systemsisuseful to determ-
ine the set of genes that function in a system, and the order
in which they operate, in order to study the function of indi-
vidual genes we need to carry out knockout experiments. In
a knockout experiment, a gene is deleted from the genome
and the resulting strains are profiled using expression exper-
iments. Such experiments allow us to determine the down
stream effects of the knockout gene, which in turn can be
used to identify target genes and to construct genetic interac-
tion networks. Many knockout expression experiments have
been carried out in the static case (Hughes et al., 2000). More
recently many knockout time courses are becoming available.
These include cell cycle double knockouts (Zhu et al., 2000;
Pramilla et al., 2002) and knockouts under stress conditions
(Gasch et al., 2000).

Development Understanding development is key to
understanding many genetic diseases. It isnatural to usetime
series expression experiments to study development at the
molecular level, and to identify genes that play key role in
different stages of development. For example, an 80 time
points expression experiment studying the development of
thefruit fly Drosophilaidentified many genesthat control spe-
cific stagesinthefly developmental process (Arbeitmanetal.,
2002). Similar experiments were carried out in other organ-
isms, including the worm Caenorhabditiselegans (Kimet al.,
2001). More recently, expression experiments have been car-
ried out to study human devel opment. In lvanovaet al. (2002),

human embryonic stem cells have been profiled in order to
identify genes that are involved in the specific differentiation
of these cells to various tissue types.

Infectious and other disease Identifying genesthat act in
response to acertain infectious disease isakey issuein devel-
oping drugs to fight these diseases. Nau et al. (2002) studied
atime course of human cells that were infected by four dif-
ferent pathogens. Other examplesinclude Huntington disease
(Xu et al., 2002) and cancer (Whitfield et al., 2002). Asthe
examples above suggest, expression experiments can be used
to answer many biologically important problems. However,
as we discuss below, addressing these issues requires us to
solve many computational problems aswell.

1.2 Computational challengesin the analysis of
time series expression data

The biological and computational issues that are addressed
when analyzing gene expression data in general, and time
series expression data in particular can be presented using
a hierarchy of four analysis levels: experimental design,
data analysis, pattern recognition and networks. Each of
these level s addresses a specific biological and computational
issues, and also serves as a pre-processing step for higher
levelsin the hierarchy. The rest of this review is devoted to
these four levels. For each of these levels, we first discuss the
computational challenges and biological problems associated
with thislevel, and then summarize some of the methods that
have been suggested to solve these problems. For somelevels,
wediscussin greater detailsone of the methodsthat have been
suggested for problems at that level.

2 EXPERIMENTAL DESIGN

Experimental design is key to the success of any expres-
sion experiment. In the past, various aspects of experi-
mental design for general microarray experiments have been
studied. For example, Zien et al. (2002) studied the num-
ber of microarrays required for expression experiments and
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Ben-Dor et al. (2000) studied the combinatorial problem
of selecting representative probes for gene sequences in
order to minimize cross-hybridization. Below, we focus on
experimental design issues that are unique to time series
expression data.

2.1 Challenges

Animportant computational problemfor designingtimeseries
expression experimentsisthe determination of sampling rates.
If the experiment is under-sampled, the results might not cor-
rectly represent the activity of the genesin the duration of the
experiments, and key eventswill bemissed. Ontheother hand,
over-sampling is expansive and time consuming. Since many
experiments are limited by budget constraints, over-sampling
will result in shorter experiment duration, which might lead
to missing important genes that participate in the process at
alater stage. This problem has also biological consequences,
since sampling rates should depend on the transcription and
degradation rates of the messenger RNAs. In addition, under-
sampling can lead to temporal aggregation effects (Bay et al.,
2003). Theseeffectsmay interferewith our ability toinfer cas-
ual relationships since genes that are conditionally independ-
ent may appear as dependent if the sampling rateistoo coarse.

Another problem related to some of the time series exper-
iments is the problem of synchronization. When temporal
systems are studied, cells need to be arrested so that all cells
start at the same phase. Even if the arrest succeeds [which
is not always the case (Shedden and Cooper, 2002b)] cells
may lose their synchronization after awhile (Whitfield et al .,
2002). Determiningif and when cellsgo out of synchimproves
the analysis process, and can help in deciding which of the
time points accurately reflects the behavior of the system
being studied.

2.2 Algorithmsfor the experimental design level

As can be seen in Table 1, to date, sampling rates depend
on biologists intuition, and varied (depending on the |abor-
atory) even under similar experimental conditions [e.g. the
three alpha cell cycle experiments (Spellman et al., 1998;
Zhu et al., 2000; Pramilla et al., 2002) were sampled every
7, 15 and 10 min, respectively]. Despite the importance of
this problems we are not aware of any work that addressed
these issues, perhaps indicating the complexity of this prob-
lem. Synchronization has received more attention. Shedden
and Cooper (2002a) used a Fourier analysis agorithm to
test the synchronizations of different arrest methods. Their
method looks at how many genes are best explained by a
periodic curve and how many are best explained using a
periodic curve. Using randomization tests, they can determine
the actual synchronization achieved by the method, by com-
paring these sets of genes. They have determined that at least
one of the human cell cycle experiments does not achieve
considerable synchronization (Shedden and Cooper, 2002b)

whilemost yeast cell cycle experimentsdid show considerable
synchronization.

3 DATA ANALYSIS LEVEL

Inthislevel thefocusisontheindividual gene, and theissues
addressed range from determining the continuous representa-
tion for each gene to aligning genes in different experiments
and to identifying differentially expressed genes between two
or more time series expression experiments.

3.1 Challenges

Following a microarray time series experiment, a key chal-
lenge is to extract the continuous representation of all genes
throughout the course of the experiment. Such a representa-
tion enables us to overcome problems related to sampling
rate differences and missing values. Unfortunately, the nature
of microarray data makes straightforward interpolation diffi-
cult. Data are often very noisy and there are few replicates.
Thus, simple techniques such as interpolation of individual
genes can lead to poor estimates. Additionally, in many cases
there are alarge number of missing time pointsin aseriesfor
any given gene, making gene-specific interpolation infeas-
ible. A particular problem arises when series are not sampled
uniformly such as in Spellman et al. (1998), Gasch et al.
(2000) and Eisen et al. (1998). Another challenge arises
from the variability in the timing of biological processes.
The rate at which similar underlying processes such as the
cell cycle unfold can be expected to differ across organisms,
genetic variants and environmental conditions. For instance,
Spellman et al. (1998) analyze time series data for the yeast
cell cycleinwhichdifferent methodswere used to synchronize
the cells. It is clear that the cycle lengths across the different
experiments vary considerably, and that the series begin and
end at different phases of the cell cycle (Table 1). Thus, one
needs a method to align such series to make them compar-
able. Some of the time series experiments are performed to
detect periodic genes (Spellman et al., 1998). Identifying such
genesis challenging because different genes may have differ-
ent phase and amplitude, and because of the noise present in
al time series expression experiments. Finally, many experi-
mentsare carried out to identify geneswith altered expression
between samples. For instance, one would like to identify
genes that have changed significantly after an experimental
treatment or that differ between normal and diseased cells.
However, comparisons of time series expression datasets are
hindered by biological and experimental inconsistencies, such
as differences in sampling rate, variations in the timing of
biological processes and the lack of full repests.

3.2 Continuous representation of time series
expression data

InBar-Joseph et al. (2003c), amethod for representing expres-
sion profiles by aligned continuous curvesisdescribed. Cubic
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Fig. 1. Left panel: Raw values for three cycling genes in three different cell cycle experiments. Middle panel: Alignment of the measured
values. Right panel: Aligned continuous curves for the three genes. Using the continuous representation results in reduced noise, correctly
making the expression pattern of each of these genes similar across the different synchronization methods.

splines are used to represent gene expression curves. Cubic
splines are a set of piecewise cubic polynomials, and are fre-
quently used for fitting time series and other noisy data. For
gene expression, B-splines, a type of spline that represents
each point as alinear combination of a set of basis polynomi-
als. By knowing the value of these splines at a set of control
points, one can generate the entire set of polynomials using
these basis functions. Owing to noise and missing values,
estimating these splines from expression data for each gene
could lead to over-fitting of the data. Instead, spline coeffi-
cients of co-expressed genes are constrained to have the same
covariance matrix, and thus other genesin the same class are
used to estimate the mi ssing val ues of aspecific gene. Thegoal
is to infer, for each gene and each class of genes, the value
of their spline control points. The parameters of this model
are computed using an EM agorithm. This method provides
asuperior fit for time series expression data when compared
with other methods (which are discussed below), thoughitis
only appropriate for relatively long (>10 time points) experi-
ments. This method can also be used to continuously align
time series expression data (Fig. 1). The algorithm seeks to
maximize the similarity between the two sets of expression
profiles by adjusting a shift and stretch parameters for one
of the profiles, holding the second profile fixed. Finaly, this
algorithm was used to identify differentially expressed genes

in time series expression data (Bar-Joseph et al., 2003b).
Using the aligned continuous curves, a global difference
measure between these two curves is computed. In order to
determine the significance of this global difference, a noise
model for individual samplesis used to find a curve that best
explainsthis difference. Thus, thisagorithm is ableto assign
significance to tempora expression differences, even when
only partial repeats are available (e.g. repeats of time point 0).
We concludethissectionwith aword of caution. Whilesplines
are useful for fitting time series expression data, their success
is highly dependent on the measured data. In particular, if the
dataaretoo noisy or sampled at avery low rate, splines(or any
other continuous representation) will not be able to generate
an accurate representation of the expression profile.

3.3 Other algorithmsfor the data analysislevel

Several papers have used simple interpolation techniques
to estimate missing values for gene expression data. Aach
and Church (2001) use linear interpolation to estimate gene
expression levels for unobserved time points. D’haeseleer
et al. (1999) uses spline interpolation on individual genes to
interpolate missing time points. Zhao et al. (2001) fitted a
statistical model to all genesin order to find those that are cell
cycle regulated. This method uses a custom tailored model,
relying on the periodicity of the specific dataset analyzed, and
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is thus less general than the above approaches. As for aign-
ment, Aach and Church (2001) presented a method for align-
ing gene expression time series using an algorithm based on
Dynamic Time Warping, adiscrete method that uses dynamic
programming and is conceptually similar to sequence align-
ment algorithms. Many algorithms have been introduced for
identifying genesdifferentially expressed between two exper-
imentsin the static expression case (Golub et al., 1999; Dudiot
et al., 2004). However, due to differences in sampling rates
and variationsin thetiming of biological processes (Table 1),
such methods cannot be directly applied to most time series
expression datasets. Relatively few methods were devel oped
for identifying such genesin time series data. These methods
include cluster analysis (Zhu et al., 2000; Gasch et al., 2000),
inwhich clusters of genes are compared across the two exper-
iments and generalized singular value decomposition (SVD)
[presented by Alter et al. (2003)], which are al so used to detect
differences between sets of genes, but are less appropriate for
comparing individual genes. Other researchers have used cus-
tom tailored models (Xu et al., 2002) to identify genes with
expression patterns that differ significantly from the assumed
model. Identifying periodically expressed genes was also the
subject of recent research. In addition to the Shedden and
Cooper method discussed above, Wichert et al. (2004) used a
periodgram, whichisalso based on Fourier analysistoidentify
significant peaks in time series expression data.

4 PATTERN RECOGNITION LEVEL

Due to the large number of genes that are profiled in each
experiment, clustering is needed to provide aglobal overview
of the experiment results. In addition, clustering was used to
determine function for unknown genes (Eisen et al., 1998),
to look at expression programs for different systems in the
cell (Spellman et al., 1998) and for identifying sets of genes
that are specifically involved in a certain type of cancer or
other diseases (Alon et al., 1999). Another mgjor challenge
in gene expression analysisis effective data organization and
visualization. It isthus not surprising that early work on gene
expression analysishasfocused onthislevel, and several clus-
tering algorithms have been suggested for gene expression
data (Ben-Dor et al., 1999; Tamayo et al., 1999; Sharan and
Shamir, 2000).

4.1 Challenges

While clustering is important for all expression experiments
(static and time series), there are a humber of issues that
should be specifically addressed when clustering time series
expression data. First, most clustering algorithms [including
k-meansand self-organizing maps (Tamayo et al ., 1999)] treat
their input as a vector of independent samples, and do not
take into account the temporal relationship between the time
points, and the duration each time point represents. Thus,
these algorithms cannot benefit from the known dependencies
among consecutive points. In addition, since many time series

are sampled non-uniformly, such independence assumption
might skew the results. Another important problem is infer-
ring causality from time series expression experiment. Since
some genes act as regulators of other genes, by looking at the
temporal expression patternsof geneswemight beabletoinfer
relationships between regulators and the genes they regulate,
and explain how genes are regulated in the cell. When ana-
lyzing time series expression datasets, we are interested not
only in the clusters themselves but aso in the relationships
between the different clusters. This is especially important
when using clustering algorithms for visualization purposes.
For time series data, such algorithms should provide an over-
view of the dynamics of the system as well as the different
groups (or clusters) involved. Finally, while tens of thousands
of genes are profiled at each experiment, many time series
datasets are short (<10) and noisy. Even if expression experi-
ments become cheaper, thisproblem isnot likely to disappear,
since obtaining large quantities of human samplesisanissue.
This problem requires the development of novel methods for
identifying true patternsin such short datasets.

4.2 Hidden Markov modelsfor clusteringtime
series datasets

In Schliep et al. (2003), the authors present a hidden Markov
model (HMM) based clustering agorithm for time series
expression data. While other clustering algorithm (such as
k-means and hierarchical clustering) will produce the same
result when the time points are randomly permuted, HMMs
take into account the temporal nature of the expression data-
sets resulting in higher quality clustering. HMMs can be
defined by the following parameters: the (hidden) states, S;,
the probability of starting at a given state, n;, the transition
probability from state i to state j a;,; and b; (w) the emis-
sion probability of symbol w € X at state S;. Given gene
expression data for n genes denoted by O, the goal isto find
apartition of thedatainto K HMMs A4, ..., Ak, which will
maximize the likelihood of the data given the learned HMM
model. For gene expression data, the omission probabilities
are assumed to be Gaussians with fixed variance (Fig. 2). In
order to determine the parameters of this model an iterative
algorithm is used. This algorithm performs two steps: in the
first step each gene is assigned the most likely HMM and in
the second step the parameters of each HMM are determined
using the genes that were assigned to it.

4.3 Other algorithmsfor the pattern recognition
level

Alter et al. (2000) and Holter et al. (2000) used SV D to deter-
mine the different phases in the yeast cell cycle, and to order
genes in the two-dimensional plane based on these phases.
They have determined that expression patterns for al cell
cycle genes can be reconstructed from a linear combination
of two base profiles. As mentioned above, most algorithms
for clustering gene expression data were devel oped for static
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Fig. 2. HMMsfor clustering time seriesexpression data. Each series
is modeled using a HMM which takes into account both, transition
from prior state, and omission probability at current state. The omis-
sion probabilities (b;s) are assumed to be Gaussians with different
mean and fixed variance.

expression datasets. In order to take into account the actua
time that each sampled point represents, the splines frame-
work discussed above can be extended so that it can be used
when the class information is not given (Bar-Joseph et al.,
2003c). This results in the clustering of the continuous rep-
resentation of each expression profile, which is important
for non-uniformly sampled data. Other researchers looked
at relationships between temporal profiles of different genes.
For example, Ramoni et al. (2002) studied clustering time
series expression data based on their dynamics. Qian et al.
(2001) used local alignment algorithms to study time-shifted
and inverted gene expression profiles and to infer causal-
ity from time series profiles. Holter et al. (2001) used a
time translational matrix to model the temporal relationships
between different modes of the SVD. In order to improve data
visualizationand analysis, anagorithmfor optimally ordering
the leaves of an hierarchical clustering tree was presented in
Bar-Joseph et al. (2003a). By ordering the leaves of thistree,
the algorithm allows usersto identify not only the clusters but
also the relationships between these clusters.

5 NETWORKS

The final analysis level is the networks level in which we
focus on the interactions between genes, and attempt to build
descriptive and predictive models for different systemsin the
cell. For regulatory networks, the components of such models
are the genes (or their protein products) that are involved in
a specific system, and the TFs that regulate the system. Such
models provide a description of the process under investiga-
tion, and the interactions that take place during the activation
of the system (How are the different genes involved activ-
ated?, Which genes are turned on first?, Which next?, etc.).
Predictive models should also be able to address questions
about different perturbations of the system (What happens
when we knockout a specific gene? and What will happen
when we add a specific drug to the environment?). Mod-
els are useful for many applications. For example, in drug
discovery researchers are interested in identifying proteins

that are at the root of a certain disease. Using these mod-
els we can determine which genes are the causes, and target
them to prevent the spread of the disease. Another important
application is to identify side effects of a certain treatment.
Targeting a protein can cause a number of side effects that
might be toxic to the cell. Using genetic interaction models,
we can determine the most probable side effects in advance
and target only those proteins for which these side effects are
minimal.

5.1 Challenges

A key issue when trying to model a system is data integra-
tion or information fusion. Unlike the lower analysis levels,
expression data is not enough to accurately reconstruct these
networks. Owing to thelarge number of genes, many different
hypotheses can be generated to explain a specific expression
pattern. In order to constrain the number of possible hypo-
theses, we need to incorporate additional biologica data, and
to ‘fuse’ such data with gene expression data. For example,
genetic regulatory networks are key to understanding expres-
sion programs in the cell (Lee et al., 2002). In order to
accurately construct such networks, we need to combine
disparate biological data sources, including protein-DNA
binding data, protein interaction data and expression data

Another challenge at this level is obtaining perturbation
data. For regulatory networks, such dataarelikely to consist of
gene knockouts under different experimental conditions. For
temporal systems, we will need time series knockout experi-
ments. However, large quantities of such knockout data will
not be available in the near future. Time series expression
experimentsareexpensive, and the number of potential knock-
outsislarger than the number of genes[since, in many casesa
single knockout does not alter expression, and only a double
knockout can hint at the rel ati onshi ps between theknocked out
factors and the genes they interact with (Zhu et al., 2000)].
Note that many of the additional datasets mentioned above
(e.g. protein-DNA binding data) are static. Thus, they will
require models that can combine time series and static data.

As mentioned above, sampling rates and temporal aggrega
tions can have a negative impact on our ability to correctly
reconstruct temporal networks (Bay et al., 2003). Thus, solv-
ing problems at lower analysis levels is an important step
toward reconstructing temporal interaction networks.

Finally, we need to select an appropriate computational
modeling framework for such systems. A generative model
for various systems will be the ultimate goal, however, due
to the large number of genes involved, the current amount
of data cannot support such models on a large scale. One
possible intermediate solution is to construct networks from
gene modules—sets of genesthat are assumed to share acom-
mon function or beinvolved in the same pathway. Algorithms
for identifying such modules, and assembling them to tem-
pora networks are an important first step toward modeling
such systems.
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Fig. 3. Computational discovery of the cell cycle sub-network using expression and binding data. This automatically recovered network is
extremely similar to the one described in Simon et al. (2001), which required considerable prior biological knowledge to construct.

5.2 A dynamic modd for the cell cycle system
in yeast

In Lee et al. (2002) a sub-network discovery agorithm for
the cell cycle system was presented (Fig. 3). This algorithm
works by combining gene expression and protein—-DNA bind-
ing data as follows. First, the algorithm uses the full set of
TFs and alarge set of expression data to identify gene mod-
ule; setsof genesthat are co-expressed and co-regul ated. Next,
genesin the generated modules are flagged if they are determ-
ined to be involved in the cell cycle system based on their
cyclic behavior in atime series gene expression experiment.

A statistical test based on the hypergeometric distribution is
then used to determine which modules contain a signific-
ant number of flagged genes and the TFs that regulate these
modules are identified. Finaly in the third step, the module
discovery algorithm isrun using relevant expression data, the
flagged genes and the list of identified regulators, produc-
ing a set of modules with genes and factors directly involved
in the process of interest. In order to present a dynamic
model for this system, the expression profiles of the genes
in the discovered modules are interpolated. Next, one mod-
ule is selected as an anchor (or time point 0), and the rest
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of the modules are aligned to this module using the con-
tinuous alignment algorithm discussed above. This process
is repeated for all modules, resulting in a temporal ordering
of the discovered modules. Note that the actual activation
time of the factors can be determined even if their expression
profiles does not change under the experimental condition by
using the time of the modules they regulate. This results in
the correct assignment of factors to different stages in the
cell cycle system, without directly observing their protein
levels.

5.3 Other algorithmsfor the network analysis
level

Recently, a number of papers discuss the use of dynamic
Bayesian networks (DBNs) for modeling time series expres-
siondata. DBNsarean extension of Bayesian networks(BNSs),
which have been successfully applied to model static expres-
sion data (Pe'er et al., 2001). The main advantage of DBNs
for gene expression dataisthat unlike BNs, which areacyclic,
DBNsallow for cycles, which are common in many biological
systems. In addition, DBNs can also improve our ability to
learn causal relationships by relying on the tempora nature
of the data. Bel ow, we mention some of these papersand their
conclusions.

Ong et al. (2002) generated DBNs to model response to
physiological changesin Escherichia coli. Their method used
prior biological knowledge for grouping together genesinthe
same operon that are transcribed together and are thus co-
regulated. Thisallowed them to reduce the parameters of their
model and increase its significance. They tested their method
on 169 genesin nine operons from E.coli and concluded that
their DBN correctly identified correlations with related genes
for four of the nine operons.

Perrin et al. (2003) presented aDBN model containing hid-
den variables (i.e. nodes for which we do not have direct
observation) to overcome both biological and measurement
noise. Their model uses an extension of the linear regression
model with normally distributed noise. They applied their
method to model the DNA repair network in E.coli, focus-
ing on the eight main genes in that system. In general, they
have found that their method was capable of extracting the
main regulatory circuits for this system. As for prediction,
they observed a very high correlation between the prediction
of the generated network for the next time step and the actua
values observed (0.97) and a somewhat lower correlation for
similar prediction of multiple steps (0.65).

Kim et al. (2003) use DBNs to model a 45 genes sub-
network of the cell cycle system in yeast. By comparing the
resulting network with apreviously determined network from
the KEGG database they have concluded that many of the
edges can be correctly identified using DBNSs.

In order to test the application of DBNs to gene expres-
sion data, and to determine their accuracy, Husmeier (2003)

performed a simulation-based analysis. Unlike with real bio-
logical data, in a simulation-based study we know what the
correct network is, and so it is possible to compare the res-
ulting network and the true (underlying) network. This was
done by selecting a significance threshold for each edge,
and determining the true positive (how many correct edges
were recovered) and false positive (how many recovered
edges do not exist in the true network) rates. Husmeier con-
cludes that while the global network recovered by DBNs
is not useful, local structures can be recovered to a certain
extent.

As can be seen from the above papers, DBNs seem like a
promising direction for modeling temporal system. However,
currently most work is limited to the analysis of a small set
of genes or to simulation studies. As we discuss below, more
data and improved computational tools are required in order
to obtain better large-scale models for these systems.

6 DISCUSSION

As can be seen from the Challenges sections, time series
expression data raises many new computational problems.
Some of these problems have been addressed (though thereis
still alot of room for improvement) while others will require
new computational tools. The way | see it, the interesting
computational problems (Ieading to interesting computational
algorithms) remain on two levels: the experimental design
level and the networks level. While the other levels till
present a number of unsolved problems (e.g. dealing with
short time series expression experiments), these two levels
have received relatively little attention to date, and are ripe
for further research. Below, | outline some promising research
directions for these two levels.

One of the key issues in the experimental design level is
determining sampling rates for time series expression exper-
iments. As mentioned above, these rates currently depend on
the intuition of the experimentalists. One possible direction
for determining these ratesisto use an online algorithm. This
algorithm can start by sampling at an initial (low) frequency.
Next, the algorithm will seek to determine whether the ini-
tial frequency is appropriate or not by computing confidence
intervals for areconstructed curve based on the current avail-
able data. If not, the algorithm should choose a new point
to sample. This process should be repeated until the required
confidence level isreached.

Synchronization is another issue which deserves more
attention. Recently, two methods have been presented to
deconvolve cell cycle expression data in order to overcome
synchronization loss. Both methods assume that cell cycle
rates for yeast cell population follow a normal distribution.
Using this assumption, Lu et al. (2004) presented a method
for resynchronizing time series expression data by assuming
that expression profiles follow a specific pattern (sinusoids).
Bar-Joseph et al. (2004) used a different method which relies
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on external information (FACS or budding index) to determine
amodel for synchronization loss, and then uses this model to
deconvolve expression data. Both methods seem to work well
for yeast, but the problem of deconvolving human cell cycle
data, whichisnot synchronized for one completecycle, isstill
open. Extension of the models presented in these papersisa
promising direction for solving this problem.

Asfor the networkslevel, as mentioned aboveit isunlikely
that wewill have alarge number of time seriesknockout data-
sets in the near future. Unlike time series, there are already
large amounts of static knockout data (Hughes et al., 2000)
available. Thus, one way to overcome this limitation is to
construct models and frameworks which will efficiently com-
bine a small amount of time series wild-type and knockouts
datasets with larger amounts of static knockout datasets. Such
methods will use time series data to construct temporal mod-
els and static data to determine parameters and interactions
for these models.

Another promising direction isinformation fusion. The bet-
ter our prior assumptions the more accurate the resulting
networks will be. Such priors on the network structure can
be obtained from other high throughput data sources, includ-
ing protein—protein and protein-DNA interactions. This has
been aready done for static expression data and we anti-
cipate similar success with time series data. Protein—protein
interaction and protein-DNA binding data can aso be used
to overcome two other issues related to modeling biological
systems:. the huge search space for network structures and
the fact that gene expression data does not always correlate
with protein levels (while network nodes usually correspond
toproteins). Specifically, many TFsareexpressed at low levels
and are activated by post-translational modification. By rely-
ing on external sources for determining network structure,
we can still identify regulation events even though they do
not appear in the expression data. Another way to address
the latter problem is to use perturbation (knockout) data, as
mentioned above.

Many recent attempts to model static systems in the cell
rely on gene modules. Different papers define gene modules
in different ways, but informally such modules can be thought
of as a small collection of genes that share similar function
in a specific system. The main advantage of using modulesis
thegainin statistical confidence obtained from a collection of
genes versus binary (gene—gene) interactions. This should be
especially useful for timeseriesanalysisbecause of thelimited
dataavailable. As mentioned above, some of the current work
on modeling temporal systems have aready used modules
(Leeet al., 2002; Ong et al., 2002) and | anticipate that they
will be used further in the future.

Finally, while some success has been achieved in modeling
temporal systems, | believe that we arejust at the early stages
of this work. In particular, building a complete generative
model for alarge system in the cell remains one of the holy
grails of computational biology.
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