
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Calibration and assessment of channel-specific biases in microarray 
data with extended dynamical range
Henrik Bengtsson*1, Göran Jönsson2 and Johan Vallon-Christersson2

Address: 1Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund, Sweden and 2Department of 
Oncology, Lund University, Barngatan 2, SE-221 85 Lund, Sweden

Email: Henrik Bengtsson* - hb@maths.lth.se; Göran Jönsson - goran.jonsson@onk.lu.se; Johan Vallon-Christersson - johan.vallon-
christersson@onk.lu.se

* Corresponding author    

Abstract
Background: Non-linearities in observed log-ratios of gene expressions, also known as intensity
dependent log-ratios, can often be accounted for by global biases in the two channels being
compared. Any step in a microarray process may introduce such offsets and in this article we study
the biases introduced by the microarray scanner and the image analysis software.

Results: By scanning the same spotted oligonucleotide microarray at different photomultiplier
tube (PMT) gains, we have identified a channel-specific bias present in two-channel microarray data.
For the scanners analyzed it was in the range of 15–25 (out of 65,535). The observed bias was very
stable between subsequent scans of the same array although the PMT gain was greatly adjusted.
This indicates that the bias does not originate from a step preceding the scanner detector parts.
The bias varies slightly between arrays. When comparing estimates based on data from the same
array, but from different scanners, we have found that different scanners introduce different
amounts of bias. So do various image analysis methods. We propose a scanning protocol and a
constrained affine model that allows us to identify and estimate the bias in each channel. Backward
transformation removes the bias and brings the channels to the same scale. The result is that
systematic effects such as intensity dependent log-ratios are removed, but also that signal densities
become much more similar. The average scan, which has a larger dynamical range and greater
signal-to-noise ratio than individual scans, can then be obtained.

Conclusions: The study shows that microarray scanners may introduce a significant bias in each
channel. Such biases have to be calibrated for, otherwise systematic effects such as intensity
dependent log-ratios will be observed. The proposed scanning protocol and calibration method is
simple to use and is useful for evaluating scanner biases or for obtaining calibrated measurements
with extended dynamical range and better precision. The cross-platform R package aroma, which
implements all described methods, is available for free from http://www.maths.lth.se/
bioinformatics/.

Background
The microarray technology provides a way of simultane-

ously measuring transcript abundances of 103 – 105 genes
from one or more cell or tissue samples. A microarray,
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also known as a gene chip, has well defined regions that
each consists of immobilized sequences of DNA, which
each is unique to a specific gene. These regions are referred
to as probes [1]. When fluorophore labeled cDNA, referred
to as targets, obtained by reverse transcription of mRNA
extracted from the samples of interest is let to hybridize to
the probes for a few hours, each region on the microarray
will specifically bind a certain amount of hybridized DNA
unique to the corresponding gene. Depending on if a two-
channel or single-channel microarray platform is used,
either several and differentially labeled targets are hybrid-
ized to the same array, or different targets are each hybrid-
ized to separate arrays using identical labels. Next, the
array is scanned at different wavelengths to excite the flu-
orescent molecules using a light source, for instance a
laser. Shortly after the fluorophores have been excited
they emit photons, which are registered and quantified in
each position by the scanner, which results in a high-res-
olution digitized image for each channel. Using image
analysis methods, the pixels that belong to the regions
that contain the probes are identified and averaged, and
an estimate of the transcript abundance for each gene is
obtained.

Since these estimates are obtained from a complex meas-
urement process of several steps, it is likely that the
observed signals contain not only measurement noise,
but also systematic variations of different kinds [2].

In this report, we show the existence of a channel-specific
bias introduced by the scanner and most likely its detector
parts. Our results indicate that the image analysis may
also contribute with a small bias. The effects channel-spe-
cific biases have on the downstream microarray analysis
are many [2,3]. We suggest a scan protocol and a model
that will allow us to estimate the biases and calibrate the
observed signals accordingly. The result will be that the
intensity dependent effects are removed, but also that the
effective dynamical range of the scanner is increased sev-
eral times.

Model
General model
Consider a microarray experiment involving genes i = 1
,..., I from RNA extracts c = 1 ,..., C. In single-channel
microarrays each array measures the gene expression lev-
els in one RNA extract, whereas in two-color microarrays
each array measures two RNA extracts, one in each chan-
nel. We will refer to each set of signals from each RNA
extract as channels. Let µc,i be the true gene expression
(transcription) level of gene i in channel c. Ideally, statis-
tical analysis can then be done on these quantities. For
instance, by comparing the relative abundances in two
channels, that is ri = µ1,i/µ2,i for all genes i, it is possible to
identify genes that are significantly differentially

expressed (ri ≠ 1). However, in reality we do not observe
the true expression levels, but only the quantified spot
intensities yc,i. The general relation between the observed
and the true expression levels can be written as

yc,i = fc(µc,i) + εc,i,  (1)

where fc(·) is an unknown channel-specific function,
which we refer to as the measurement function, that
includes all steps in the microarray process. Moreover, we
assume independent intensity dependent error terms εc,i
such that E[εc,i] = 0. Because we want to do inference based
on µc,i, it must be possible to find the inverse of fc(·),
which (at least in theory) is possible if it is strictly
increasing.

To be able to find the form of fc(·), high quality calibra-
tion data from several stages along the microarray process
is required. Here we will consider a simpler case. Split the
overall measurement function into two parts. The first
part xc,i = gc(µc,i) models, in channel c, the amount of light
from spot i that enters the photomultiplier tube (PMT) [4]
as a function of the transcription level of clone i. The sec-
ond part, which is studied in this report, is yc,i = hc(xc,i) and
models the observed signal as a function of the amount of
photons in channel c and spot i that enters the PMT. That
is, it captures the characteristics of the scanner's light
detector, but also of the image analysis methods. We want
to emphasize that the light from one spot does not neces-
sarily originate solely from the fluorescent molecules that
are attached to the hybridized target DNA. Light from
other sources such as cross-hybridized target, intrinsic flu-
orescence from spot buffer, and scatter light may also con-
tribute with photons of similar wavelengths.

Next we will show that hc(·) is almost perfectly affine.
This measurement function also depends on the scanner
settings, especially the scanner sensitivity, which is indi-
cated below with the super index (k). In other words,

where for each fix scanner setting k,  and  are
channel-specific bias and scale parameters, respectively.
Assume that xc,i is fix for all PMT voltages.

Note that the above relationship is not necessarily linear.
Here we refer to linear in the strict sense where ac = 0 so
that the output is proportional to the input. Lack of line-
arity has important implications on downstream analysis.
For instance, when spotted as well as in-situ synthesized
microarrays are used it is common to do statistical analy-
sis on the log-ratios Mi = log2(yR,i/yG,i) and the log-intensi-
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ties  for all genes i [5], where we for

convenience have denoted the two channels to be com-
pared by R and G although such comparisons are not lim-
ited to within-array measurements. One of the rationales
for this bijective transform is that under ideal conditions
the main measure of interest, the fold change, is contained
in one variable only. However, a channel specific bias
introduced by fc(·) will introduce a so called intensity
dependent bias in the observed log-ratios. Commonly
observed intensity dependent effects in the log-ratios [6]
can partly be explained by the fact that the logarithm is
taken on affinely transformed signals [2,3,7].

Constrained model
The model in equation (2) is not identifiable. We address
this problem as follows. Consider the case where the same
array has been scanned at K different PMT settings. Let

 be the vector of the K quantified sig-

nals for gene i and channel c. In the noise-free case it fol-

lows from (2) that  lies on the line L(ac, bc)

in K, which has direction  and goes

through the point . The 2K parameters
of ac and bc are not identifiable, since L has only 2K - 2
degrees of freedom. In fact, any transformation bc ← k·bc

and ac ← ac + l·bc, where k and l are scalars, will leave L
intact. In this paper, we make ac and bc identifiable by

choosing k and l so that  = 1 and ac is the point on L

closest to the (diagonal) line L' = {ec(1,..., 1); ec∈ }. The
choice of ac can be motivated by looking at observed data.

By inspection, we observe that the bias  in Model (2)
is not varying much when the PMT gain is changed. To

demonstrate this,  have been plotted for each of

the six possible PMT pairs in Figure 1. First, the close fit of
the lines to data is evidence that the scanner is linear in its
dynamical range. Second, all lines go through approxi-
mately the same point, lets call it (ec, ec), suggesting that
there is a common PMT-independent bias ec. More pre-
cisely, we split the bias term into two parts, one depend-
ent and one independent on the PMT gain according to
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Affine relationship between quantified fluorescent intensities and concentration of fluorophoresFigure 1
Affine relationship between quantified fluorescent intensities and concentration of fluorophores. Scanning the 
arrays at different PMT gains indicates that there is an affine relationship between quantified fluorescent intensities and concen-
tration of fluorophores. Left: Observed signals in the green channel for PMT pairs (800, 500), (700, 500), (800, 600), (600, 500), 
(700, 600), and (800, 700) are shown in green, red, cyan, black, blue and magenta, respectively. An affine model is estimated for 
each pair and displayed as a line. Data points at the very top are saturated and ignored. Right: A zoom-in of the same data. For 

each pair the estimated , which corresponds to the true origin, has been highlighted with a circle. All lines seem to 

intersect at the same point on the  line. Shown are signals from the green channel on Array A quantified by GenePix 
from Axon scanner images.
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and define  ∈ K. For this split, data
indicates that ||dc|| ≈ 0, where ||·|| is the norm in, say, L2

(Euclidean distance). Let d = y - e(1,..., 1) where y ∈ L and

e ∈ . The constraint that ac is the point of L closest to L'
can then be formulated as

where the minimization is with respect to y and e. Equiv-
alently, this means that dc is orthogonal to bc and (1,..., 1).
The above can be interpreted geometrically as follows. By
definition, ac is a point on the line L(ac, bc). Similarly, ec =
ec(1,..., 1) is a point on the diagonal line that goes through

(0,..., 0) and (1,..., 1) in K, i.e. L'. Minimizing dc accord-
ing to (4) is the same as finding the shortest distance
between the line L and the diagonal line, which is also the
distance between the two points ac and ec. From this geo-
metrical interpretation it is also clear that in order for the
parameters to be uniquely identifiable the line L must not

be parallel to the diagonal line, that is,  must be dif-

ferent from  for some k.

A robust estimate of L was proposed in [2], using itera-
tively re-weighted principal component analysis
(IWPCA). This estimate of L, together with the above par-

ametrization of ac and bc, give us estimates  and  of

all 2K - 2 parameters of ac and bc, as well as an estimate 
of ec.

Let us illustrate the parametrization and estimation proce-
dure for K = 2. Since two (non-parallel) lines will always
intersect, constraint (4) degenerates to the assumption

that dc = 0 or, equivalently, that  = ec In the
noise-free case the line L is described by

where  and . By set-

ting  in (5) and applying the constraint

, we get that ac = (ec, ec) and bc = (1, βc) where ec =
αc/(1 - βc). To further illustrate the stability of the PMT
independency, the parameters (ec, βc) have been estimated
for each of the six PMT pairs independently based on data
from array A scanned by the Axon scanner and quantified

by GenePix. The various estimates for both channels are
listed in Table 1. The average estimate of the bias across all

PMT pairs in the red channel was  = 18.0 (with
standard deviation 1.12). For the green channel the aver-

age bias estimate was  = 20.3 (with standard deviation
0.80). The small standard deviations confirm that dc is
indeed small.

Results
This analysis was done with eight arrays (A-H) that were
scanned on two different scanners at four different PMT
settings. Two different image analysis applications were
used. See Methods for details.

Parameter estimates
For every combination of array, scanner and signal quan-
tification method (image analysis or raw pixel intensi-
ties), we estimated the parameters ac (including ec and dc),
and bc in Model (2)-(4) for both channels (see Methods).
To get a better understanding of the properties of the esti-
mates, we used a non-parametric bootstrap approach to
obtain not only bias corrected estimates, but also their
standard deviations. Data was resampled over gene index
in a way such that the same bootstrap data sets were used
whenever pairwise comparison was done, e.g. when com-
paring bias estimates in red and green channels. For Gene-
Pix and Spot quantified signals a bootstrap sample of size
100 was used.

For the estimates based on the raw pixel intensities a dif-
ferent approach was taken. Because the number of pixels
for one scan is about 107 (per channel) and we had four
scans, our computer system limited us to estimate the
model based on a subset of 106 pixel intensities. This was
done for 100 random subsets and the mean and standard
deviation of the parameter estimates were calculated,
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Table 1: Pairwise parameter estimates. Red and green channel 
estimates of the bias and the slope for each PMT voltage pair 
together with the mean and the standard deviation of all 
estimates. The small standard deviation is evidence that the bias 
to a large extent is independent of the PMT settings. Data shown 
originates from Array A scanned on Axon and analyzed with 
GenePix.

PMT pair

(800, 500) 18.9 32.4 20.7 32.5
(700, 500) 19.0 13.0 20.9 12.8
(800, 600) 17.3 7.1 19.8 7.9
(600, 500) 19.0 4.5 20.8 4.1
(700, 600) 17.6 2.9 20.9 3.1
(800, 700) 16.3 2.5 18.9 2.6

mean 18.0 ± 1.12 20.3 ± 0.80
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much like the bootstrap method above. The mean and the

standard deviation of  and  for all possible set-
ups are listed in Tables 2 &3. The mean and standard devi-

ation of  over all arrays are shown in Table 4.

Comparison of arrays
The bias estimates for all bootstrap replicates in Tables 2
&3 have been depicted as box plots in Figure 2. Consid-
ered that the signals are in [0, 65535], the bias estimates
are very stable between different arrays. The biases span
9.8 units (0.15‰) in the red channel and 7.8 units
(0.12‰) in the green channel.

Comparison of scanners
For the two scanners, we found that the estimated bias
based on signals obtained by the Agilent scanner are con-
sequently higher than the estimates from the Axon scan-
ner. The box plots of their differences in the common bias
ec (for each bootstrap sample) between the Agilent and the
Axon scanner in Figure 3 confirm this divergence. See also
Table 4. This significant difference could be an effect of
scan order, that is, all arrays were first scanned on the Agi-

lent scanner and then on the Axon scanner. The arrays in
hand were part of a much bigger project based solely on
Agilent scanned data. To keep a consistent scan protocol
and to minimize bleaching, we could not balance the
experimental design by letting some arrays be scanned in
the reverse order. Instead, to test for scan order trends we
scanned one array first on Agilent (H-1), then on Axon
(H-1) and then again on Agilent (H-2). No apparent trend
was found.

Comparison of image analysis methods
Estimates of the common bias ec based on GenePix quan-
tified signals are consistently greater than the correspond-
ing ones based on Spot signals, cf. Tables 2,3,4. The box
plots in Figure 4 show differences in estimates of the
common bias (for each bootstrap sample) between Gene-
Pix and Spot. The difference may be explained by the fact
that the two applications use different spot segmentation
algorithms [8,9]. Because the concentration of fluoro-
phores is not homogeneous across a spot, the result is that
the distribution of pixel intensities will vary with the seg-
mentation method. This effect can be more profound for
spots with strong donut effects. Robust estimates such as

Table 2: Red channel parameters estimates. Bootstrapped parameter estimates for the red channel with standard deviations for each 
combination of array, image method (or pixel intensities) and scanner.

array image Agilent Axon
method

A Spot 17.9 ± 0.289 1.14 ± 0.148 15.8 ± 0.090 4.40 ± 0.145
A GenePix 19.8 ± 0.253 0.82 ± 0.162 18.1 ± 0.058 1.27 ± 0.095
A pixels 44.9 ± 0.036 22.85 ± 0.043 19.0 ± 0.032 0.68 ± 0.052
B Spot 19.2 ± 0.255 1.05 ± 0.165 15.5 ± 0.121 4.01 ± 0.255
B GenePix 21.2 ± 0.225 1.83 ± 0.203 17.3 ± 0.114 1.72 ± 0.253
B pixels 42.8 ± 0.049 20.71 ± 0.051 17.8 ± 0.034 2.06 ± 0.079
C Spot 17.6 ± 0.366 2.00 ± 0.192 16.3 ± 0.076 4.83 ± 0.191
C GenePix 19.8 ± 0.284 0.94 ± 0.209 17.9 ± 0.034 2.11 ± 0.135
C pixels 21.0 ± 0.138 1.48 ± 0.079 18.8 ± 0.022 1.24 ± 0.061
D Spot 18.2 ± 0.301 1.56 ± 0.103 15.3 ± 0.093 4.10 ± 0.149
D GenePix 21.1 ± 0.274 0.95 ± 0.139 17.2 ± 0.049 1.74 ± 0.090
D pixels 25.0 ± 0.522 4.10 ± 0.358 18.3 ± 0.025 1.02 ± 0.044
E Spot 18.0 ± 0.428 1.15 ± 0.109 16.1 ± 0.101 3.01 ± 0.131
E GenePix 22.1 ± 0.268 1.77 ± 0.223 17.7 ± 0.064 1.02 ± 0.096
E pixels 24.7 ± 0.144 5.51 ± 0.169 18.7 ± 0.024 0.39 ± 0.025
F Spot 19.9 ± 0.423 0.48 ± 0.163 16.4 ± 0.087 3.76 ± 0.138
F GenePix 23.8 ± 0.316 1.47 ± 0.258 18.5 ± 0.060 1.07 ± 0.106
F pixels 24.2 ± 0.131 1.37 ± 0.101 19.3 ± 0.026 0.43 ± 0.038
G Spot 16.0 ± 0.300 2.30 ± 0.166 15.5 ± 0.077 3.54 ± 0.114
G GenePix 18.3 ± 0.208 1.88 ± 0.198 17.3 ± 0.070 1.57 ± 0.134
G pixels 19.1 ± 0.096 1.48 ± 0.080 18.3 ± 0.026 0.66 ± 0.038

H-1 Spot 20.4 ± 0.161 2.12 ± 0.073 17.9 ± 0.025 1.35 ± 0.043
H-1 GenePix 22.1 ± 0.124 2.41 ± 0.097 18.7 ± 0.024 0.81 ± 0.041
H-1 pixels 44.9 ± 0.513 17.68 ± 0.528 19.1 ± 0.013 0.78 ± 0.027
H-2 Spot 20.1 ± 0.141 0.33 ± 0.040 N/A N/A
H-2 GenePix 21.8 ± 0.087 0.22 ± 0.084 N/A N/A
H-2 pixels 21.8 ± 0.047 0.26 ± 0.042 N/A N/A
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the median pixel value will to some extent protect against
this variance, but not completely. It has been suggested
[10] that the median of (pixel) ratios is a better estimate of
the ratio of hybridized cDNA than the ratio of median (pix-
els). However, the former requires that the images are
perfectly aligned with respect to shift, rotation, shear and
so on. Also, it applies exclusively to two sample compari-
sons. Because of this, we do not believe that pixel-ratio
signals are useful in practice.

Pixel-based estimates
To better understand the underlying reasons for the
observed channel biases, the proposed affine model was
also applied to pixel intensities (instead of spot signals).
The estimated biases for the two channels for different
arrays using IWPCA based on pixel values are shown in
Tables 2 &3. Except for the green channel in the second
scan round of Array H, the pixel-based estimates are con-
sistently higher than the estimates based on GenePix and
the Spot foreground signals. As noted above, pixel-based
estimates are very sensitive to image distortions. This is

Table 3: Green channel parameters estimates. Bootstrapped parameter estimates for the green channel with standard deviations for 
each combination of array, image method (or pixel intensities) and scanner.

array image Agilent Axon
method

A Spot 20.2 ± 0.106 0.51 ± 0.058 16.6 ± 0.165 6.31 ± 0.302
A GenePix 21.8 ± 0.068 0.20 ± 0.045 20.4 ± 0.123 0.88 ± 0.242
A pixels 33.6 ± 0.050 10.52 ± 0.048 22.8 ± 0.048 1.57 ± 0.093
B Spot 19.6 ± 0.094 0.90 ± 0.055 17.2 ± 0.127 2.20 ± 0.231
B GenePix 21.3 ± 0.046 0.94 ± 0.086 20.1 ± 0.152 1.20 ± 0.326
B pixels 35.7 ± 0.153 12.85 ± 0.146 21.9 ± 0.041 2.04 ± 0.087
C Spot 19.8 ± 0.050 1.21 ± 0.073 17.0 ± 0.127 2.75 ± 0.254
C GenePix 20.8 ± 0.039 0.99 ± 0.086 19.4 ± 0.100 1.11 ± 0.218
C pixels 21.3 ± 0.024 0.78 ± 0.035 22.0 ± 0.040 2.39 ± 0.082
D Spot 19.4 ± 0.097 1.49 ± 0.073 17.0 ± 0.194 1.24 ± 0.376
D GenePix 20.9 ± 0.059 0.80 ± 0.095 20.3 ± 0.126 2.31 ± 0.286
D pixels 21.6 ± 0.105 0.21 ± 0.124 22.1 ± 0.046 3.10 ± 0.092
E Spot 18.2 ± 0.121 3.29 ± 0.129 16.5 ± 0.132 2.88 ± 0.240
E GenePix 20.2 ± 0.081 1.92 ± 0.128 19.2 ± 0.137 0.74 ± 0.264
E pixels 21.2 ± 0.017 0.13 ± 0.046 21.0 ± 0.032 0.94 ± 0.058
F Spot 21.4 ± 0.125 0.58 ± 0.103 16.5 ± 0.181 4.79 ± 0.327
F GenePix 23.7 ± 0.084 1.32 ± 0.116 20.2 ± 0.132 0.34 ± 0.199
F pixels 24.1 ± 0.019 1.57 ± 0.026 22.4 ± 0.039 1.87 ± 0.071
G Spot 18.9 ± 0.088 1.62 ± 0.088 16.9 ± 0.149 3.72 ± 0.258
G GenePix 20.4 ± 0.049 1.10 ± 0.088 20.0 ± 0.164 0.84 ± 0.262
G pixels 21.0 ± 0.017 0.75 ± 0.024 22.2 ± 0.045 2.60 ± 0.085

H-1 Spot 21.2 ± 0.134 3.25 ± 0.080 18.5 ± 0.090 2.00 ± 0.170
H-1 GenePix 22.6 ± 0.100 3.47 ± 0.107 20.3 ± 0.043 0.63 ± 0.100
H-1 pixels 42.8 ± 1.417 16.68 ± 1.843 21.3 ± 0.033 1.82 ± 0.070
H-2 Spot 19.6 ± 0.229 0.16 ± 0.077 N/A N/A
H-2 GenePix 21.7 ± 0.104 0.55 ± 0.076 N/A N/A
H-2 pixels 21.5 ± 0.086 0.29 ± 0.021 N/A N/A

Table 4: Mean and standard deviation of bias estimates. Mean and standard deviation of the bias estimates of all arrays and for each 
signal quantification method. The median and MAD (median absolute deviation) of ditto gives very similar results expect for Agilent's 
pixel estimates, which become smaller but are still greater than the others.

image
method Agilent Axon Agilent Axon

Spot 18.6 ± 1.40 16.1 ± 0.792 19.8 ± 0.958 17.0 ± 0.633
GenePix 21.1 ± 1.55 17.8 ± 0.529 21.5 ± 1.05 20.0 ± 0.433

pixels 29.8 ± 10.4 18.7 ± 0.446 27.0 ± 7.76 22.0 ± 0.537
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especially a concern for the Agilent scanner since it reloads
the arrays between subsequent scans. To investigate the
effect of image distortion, we did a test where a person

with experience in microarray analysis was asked to sub-
jectively rank how badly aligned the four images in the red
channel with different PMT gains from the Agilent scanner

Bias estimated for each array and channel on both scannersFigure 2
Bias estimated for each array and channel on both scanners Estimated biases ec for each array and for all arrays 
together from the Agilent scanner (left column) and the Axon scanner (right column). The top four graphs are for the red 
channel and the bottom four are for the green channel. For each channel the top two are estimates based on signals quantified 
by GenePix and the bottom two on signals quantified by Spot. See also Table 2 & 3.
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were for each of the (unlabeled) nine arrays. The person
rated the images from Arrays A, B, D, and H-1 to be
"extremely" misaligned. The images from Array E were
considered to be "quite" misaligned, and the images from
Array C to be "slightly" misaligned. For the rest of the
arrays the images were considered to be aligned (less than
a pixel off). This is perfectly in line with the discrepancies
in Table 2, which confirms our hypothesis. Another disad-
vantages with pixel-based methods is that they are
extremely memory and time consuming. For instance,
estimation with 106 pixels is approximately 50 times
slower than with 55,488 signals.

Comparison of channels
As Figure 5 shows, the common bias ec is greater in the
green channel than in the red channel, especially for
GenePix quantified signals, when estimated based on data
from the Axon scanner. For the Agilent scanner this trend

is less clear although the Spot quantified signals seem to
give higher bias in the green channel than in the red chan-
nel. Furthermore, the biases in the red and the green chan-
nels are stable between arrays, which give further evidence
to our hypothesis that the bias originates from the scanner
(and/or the image analysis methods).

Deviation in bias estimates between PMT gains

In Figure 6 the distribution of the "bias residuals"  are
depicted for different scans k and channels c, for each
separate array, but also for all arrays together, and for both
scanners and both image analysis methods. Most
apparent is that the estimates based on signals from the
Axon scanner and especially those quantified by the Spot
software are greater than for the others, cf. Tables 2 &3.
The reason for this difference is not clear to us. For some
arrays the estimates from the red and the green channels
are strongly correlated, but it is not clear to us when this

Comparison of bias estimates between scannersFigure 3
Comparison of bias estimates between scanners. Differences in the common biases ec between the Agilent and the 
Axon scanners for each separate array and for all arrays together. The bias is significantly larger for Agilent, regardless of chan-
nel (top and bottom) and image analysis method (left and right).
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occurs. Although not in general, for some combinations
of scanner and image analysis method, there is a trend in
the PMT order (or possibly scan order). Again, we do not
know why. To summarize, we have by means of explora-
tory data analysis (not shown) tried to understand what

sometimes looks like patterns in the  :s, but we found
no apparent relationships. However, systematic effects

indicate that  may be modeled further.

Calibration
When data was calibrated according to the backward
transformation in (8)-(10) estimates (up to a scale factor)
of all xc,i:s were obtained. Since we do not know the true
values we can not verify the estimates directly. However,
partly we can do it indirectly by looking for remaining sys-

tematic effects in the log-ratios, but also by comparing the
empirical densities of the calibrated scans. For a detailed
study on systematic effects introduced by affine
transformations, see [2]. For instance, the amount of
intensity-dependent curvature in the log-ratios is related
to the bias and the relative scale factor via the product

 assuming ||dc|| = 0. To demonstrate this
relationship, we have for different PMT pairs compared
the within-channel log-ratios and log-intensities

Comparison of bias estimates between image analysis methodsFigure 4
Comparison of bias estimates between image analysis methods. Differences in the common biases ec between the 
GenePix and the Spot image analysis method for each separate array and for all arrays together. The bias is significantly larger 
for GenePix, regardless of channel (top and bottom) and scanner (left and right).
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respectively, with the corresponding ones for the back-

ward transformed data, which we denote by  and

. The log-ratios versus the log-intensities for the raw

signals of all six PMT pairs are shown in the left scatter plot
in Figure 7. The corresponding plot for the backward trans-
formed signals is shown to the very right. For each of the six
data clouds, the curvature, but also the overall bias, in the
log-ratios is removed. To further underline the effect that
a channel-specific bias has, we have calculated the log-
ratios for the bias-subtracted signals (no rescaling), which
makes Model (2) linear. As seen in the middle scatter plot,
the curvature introduced by the bias and the logarithm is
removed. The overall bias in the log-ratios which remains

is  and is removed when the signals are
rescaled. It is not correct to shift only the log-ratios
towards zero, because then the log-intensities will be
incorrect.

The various M versus A plots become very similar and so
do the four empirical density functions of the signals as
seen in Figure 8. The small bumps at high intensities are
due to the saturated signals, cf. Figure 7.

Extended dynamical range

For the Agilent scanner the effective scale parameters /

 were estimated to be in the order of approximately 1

Comparison of bias estimates between channelsFigure 5
Comparison of bias estimates between channels. Differences in the common biases ec between the red and the green 
channel for each separate array and for all arrays together. At the top is data from the Agilent scanner and at the bottom from 
the Axon scanner. Data in the left column by GenePix and Data in the right column was quantified by Spot. For data from the 
Axon scanner the common bias is greater in the green channel than the red channel, especially for GenePix quantified signals. 
For the Agilent scanner this trend is less clear although the Spot quantified signals clearly seem to have a higher bias in the 
green than the red channel.
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Bias residual estimates for all arraysFigure 6

Bias residual estimates for all arrays. Estimated bias residuals  for each array and for all arrays together from the 

Agilent scanner (left column) and the Axon scanner (right column). For each array the distribution of the four of  are 
shown in increasing PMT order. The top four graphs are for the red channel and the bottom four are for the green channel. For 
each channel the top two are estimates based on signals quantified by GenePix and the bottom two on signals quantified by 
Spot.
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: 3.5. For the Axon scanner they were in the order of
approximately 1 : 40, cf. Table 1. Thus, the calibration
method extends the effective dynamical range, with pre-
serving linearity, by a factor of 3.5 for signals from the Agi-
lent scanner and a factor of 40 for signals from the Axon
scanner.

Discussion
Sources of the bias
Because bias introduced before the PMT would be ampli-
fied differently at different gains, we suspect that the
observed bias is due to the scanner and most likely its

detector parts such as the analogue-to-digital converter
(ADC) after the PMT, but possibly also due to the image
analysis method. The observed differences between the
channels can be explained by the fact that there is one
PMT and one ADC per channel, which may have slightly
different properties. Although there are differences in bias
between the two scanners, they are still of the same order,
which we find remarkable. Another lab with a GenePix
scanner reported biases also around 15–20 (personal
communication). A possible reason for this is that the
scanners consist of similar parts.

Log-ratio and log-intensity plots of raw, translated, and calibrate signalsFigure 7
Log-ratio and log-intensity plots of raw, translated, and calibrate signals. The affine transformation gives curvature in 
the M versus A plots, which is corrected for by the affine normalization method. The three scatter plots show the within-chan-
nel log-ratio versus the log-intensity for each of the six PMT pairs based on the same data as in Figure 1. Left: Observed signal 

for different PMT pairs. For each pair the estimated  has been marked with a 

circle, cf. Figure 1. Mid: Bias corrected signals. Right: Bias and scale calibrated signals. The range of the M axis is twice the range 
of the A axis so that (6)-(7) appear as a rotation in the plots.

Densities of the logarithm of the raw, translated, and calibrate signalsFigure 8
Densities of the logarithm of the raw, translated, and calibrate signals. The affine normalization method makes the 
signal densities much more similar. Left: Density plots of the logarithm of the raw signals for each of the fours scans. Mid: Bias 
corrected signals. Right: Bias and scale calibrated signals. Data and colors are the same as in Figure 1.
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Other estimates
To rule out the obvious situation where all pixel intensi-
ties are biased we compared the above estimates with the
minimum pixel intensities. For example, for Array A
(scanned on Axon and analyzed with GenePix Pro), the
minimum pixel intensities in the red channel were 9, 0, 8,
and 9 for PMT 500, 600, 700 and 800 volts, respectively.
In the green channel the minimum pixel intensity is 0 for
all scans. It is not useful to use the minimum spot signals,

, either. For example, for the above scan

the average minimum signal across all scans in the red
channel is 19.8 (median 19.5, std. dev. 0.96), but in the
green channel it is 34.8 (median 28.0, std. dev. 19.6), cf.
Table 3.

On background subtraction
If the scanner is the main source for the observed bias,
then the background estimates should be affected by this
bias as well and subtracting the background from the fore-
ground estimates will therefore not only correct for phys-
ical background noise from the array itself, but also for the
scanner bias. The strong intensity dependent effects of the
log-ratios that are due to the bias, are much less apparent
if we apply background subtraction (not shown), giving
more evidence to our hypothesis that the observed
systematic effects originate from the scanner. Thus doing
background correction might correct for the bias, but it
will also introduce more noise at any given intensity. Also,
for the data set in hand background subtraction results in
4050 (7.3%), 6237 (11%), 7015 (13%) and 7349 (13%)
negative values (in either channel), respectively, whereas
bias subtraction results in no negative values. If we assume
that the noise is additive such that the background is
added to the foreground signals, then for probes with few
or no fluorescent molecules the true foreground signal
should be close or identical to the true background signal.
As both are estimates, approximately half of the
foreground signals for non-signal spots are less or equal to
the corresponding background signals. Thus, about half of
such spots results in negative signals. However, the differ-
ent numbers of negative signals for different PMT voltages
suggest that this can not be the full explanation. One rea-
son could be that the background estimates are likely to
be biased [9]. An error model that incorporates different
noise sources, but also different scan parameters, might
give some answers to this problem. Some models in this
context have already been suggested [3,7,11], as well as
models based on empirical Bayesian methods [12].
Another way to put it is that the background estimate is
local and based on individual spots/pixels whereas the
bias estimate is global, that is, there is one estimate for the
whole array (although local estimation of bias is possi-
ble). Therefore, the background subtracted intensity

estimates are noisier, resulting in more negative estimates
for low intensity spots.

The problem of non-positive estimates, but also high var-
iance close to zero, are limitations of the logarithmic
transform and alternatives such as the generalized loga-
rithmic transform etc. have been suggested [7,13,14].

Photo bleaching
We estimated the red dye (Cy5™) to bleach about 2% and
the green dye (Cy3™) about 1% in a typical microarray
experiment (not shown). Because the amount of bleach-
ing is relatively small, but also because it is a very complex
phenomenon, we decided to not try to incorporate it in
the above model. Some of the systematic variation seen in
the bias estimates for the different PMT settings may be
due to bleaching.

Signal density normalization
As the results show, the empirical distributions of signals
match each other remarkably well after calibration. It is
interesting to compare this method with the quantile nor-
malization methods proposed by [15-17]. The latter is
based on the "statistical" assumption that the signals in all
channels (scans) should be equal whereas the former is
based on a "physical" assumption that the signals should
be linear in the dynamical range. For a further discussion
on this see [2].

Incremental robust estimates
It turned out to be infeasible to estimate the model
parameters based on all pixel intensities, which limited us
to use only on a 10% subset of data. As argued above,
pixel-based estimates are not reliable and therefore not of
interest. However, for spot-based estimates the same lim-
itations may apply as larger data sets are made available.
We wish to overcome such memory constraints. For this
reason, we investigate the possibility to use (approxima-
tive) incremental re-weighted PCA methods [18,19].

Related work
Another method that combines multiple scans is the
masliner (Microarray Spot LINEar Regression) algorithm
[20]. It works by combining one low-PMT scan and one
high-PMT scan into a new virtual scan. If a signal in the
high-PMT scan is within a specified linear range its value
is used, otherwise the corresponding signal from the low-
intensity range is used after being transformed affinely to
fit the high-PMT scan. To combine three or more scans,
the new virtual scan can be combined with another PMT
scan and so on. The result is that the effective dynamical
range is extended. However, there are several unnecessary
drawbacks. First, although several observations of the
same spot concentration exist, which all may be within
the dynamical range of the scanner, only one observation
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is used. Statistically, the average (calibrated) scan would
be a more precise estimate. Second, since the scans are
combined pairwise the estimate of the affine relationship
between the scans is less robust. Third, although a sensi-
tivity discussion is carried out in the supplementary mate-
rials, masliner fits the affine models in a non-robust
fashion (in L2). Also, classical linear regression is used,
which assumes no error in the explanatory variable. Since
masliner makes the signals from different PMT settings
proportional to each other it will indeed remove for instance
curvature in within-channel M versus A scatter plots.
However, masliner does not model the possibility of a
PMT-independent bias and will therefore not correct for
it. We believe this is the reason why the authors observe a
"curvilinear effect" [[20], supplementary material]. For
these reasons, we believe that the robust multiscan cali-
bration method presented in this paper is superior to the
masliner algorithm and should be used instead.

Conclusions
By scanning the same microarray at various PMT settings
we have shown that there exists a bias in the measurement
of the concentration of fluorescent molecules in the spots
on the microarray. Our analysis indicates that this bias is
mainly due to the scanner, but also due to the image
analysis methods. By using a constrained affine model for
the relationship between the obtained fluorescent intensi-
ties and fluorophore concentrations in the spots, we have
been able to estimate the aforementioned bias. With esti-
mates of the bias and scale parameters in each channel
back transformation gave estimates of the amount (up to
a scale factor) of photons from each spot that enters the
PMT. Although not all photons originate solely from
fluorophores in the target DNA, this is still a far better esti-
mate of the amount of hybridized target DNA in each spot
than the corresponding signal quantified by the scanner
and the image analysis.

Before calibration, our data show a strong intensity
dependent effect in the log-ratios, whereas after
calibration there is no apparent intensity dependent
trend. Furthermore, the distributions of signals from sub-
sequent PMT scans are almost identical after calibration.
In addition, the signal-to-noise ratio is increased with
multiple scans. Finally, scanning at both low and high
PMT settings extends the dynamical range of data, which
gives higher resolution at low intensities without having
to pay the price of saturated signals.

The proposed method can be applied to other microarray
technologies such as single-channel oligonucleotide
arrays or nylon arrays, and possibly to other gene expres-
sion technologies such as quantitative real-time polymer-
ase chain reaction (QRT-PCR).

To conclude, we suggest that hybridized microarrays are
scanned at two (preferably more) PMT gain levels to iden-
tify channel dependent bias terms. Knowing the exact
PMT settings is not important, but the larger the differ-
ences are, the more precise the estimates will be. We
recommend that the scans are done in decreasing PMT-
gain order (although we did not do so here). Given esti-
mates, data can then be calibrated easily. For practical
reasons it might, however, be sufficient to estimate bias
terms for a specific scanner once and then use estimates
for calibration of subsequent microarrays. The small inter-
array variation observed for channel specific bias in our
data suggests that this would be possible. On the other
hand, without multiple scans, afore mentioned increase
in signal-to-noise and dynamical range will be lost. Also,
not investigated within the scope of this study, bias terms
for a specific scanner might change over time. For these
reasons, we suggest that microarrays are scanned multiple
times.

For two-channel microarrays, after calibrating each chan-
nel separately, a similar strategy can be applied once more
to bring differently labeled channels to the same scale as
suggested in [2]. This would rely on the assumption that
the amounts of hybridized DNA in all channels are
approximately equal for the majority of the spots, which
in turn is based on the commonly used assumption that
most genes are non-differentially expressed. This also
applies to normalization between arrays.

All necessary methods are made available in a free R pack-
age named aroma [21]. A typical usage is calibrateMulti-
scan(rg) where rg is the object containing the red and
green signals. In addition, we are currently implementing
the methods as a plug-in module for the BASE system
[22].

Methods
Arrays and hybridization
The analysis was based on eight different hybridizations
of spotted oligonucleotide microarrays (A-H). Arrays A
and B were hybridized in October 2003. Arrays C-G were
hybridized the following day and Array H was hybridized
seven weeks later. All arrays contain the same human oli-
gonucleotide set (QIA GEN) and all have an identical lay-
out of 12-by-4 print-tip groups each containing 34-by-34
(1156) spots. In total there are 55488 spots on each array.
The average (GenePix) spot area is 45–50 pixels and the
average center-to-center distance between the spots is
approximately 12–13 pixels (120–130 µm). Arrays were
produced by the SWEGENE DNA Microarray Resource
Centre, Department of Oncology at Lund University using
a MicroGrid II 600R arrayer fitted with MicroSpot 10 K
pins (BioRobotics). All arrays except Array H were spotted
in the same print batch on UltraGAPS™ coated slides
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(Corning Incorporated) during August 2003. Array H was
spotted in October the same year. Printing was performed
in a temperature (18–20°C) and humidity (44–49% RH)
controlled area. After printing was completed, arrays were
left in a desiccator to dry for 48 hours, rehydrated for 1
second over steaming water, snap dried on a hot plate
(98°C), UV-cross-linked (800 mJ/cm2) and subsequently
hybridized with various test and reference RNA samples.
Samples were labeled, purified and hybridized using
Pronto!™ Plus System 6 (Corning Incorporated) accord-
ing to manufacturer's instructions.

Scanning
Each array was scanned at four different PMT settings on
two different types of scanners. First the arrays were
scanned on an Agilent G2505A DNA microarray scanner
(Agilent Technologies) at PMT gains 100%, 30%, 50%,
and 80% (in that order). The so called dark offset inten-
tionally added to all signals by the Agilent scanner [[23],
p. 18] has been uninstalled. Arrays were then re-scanned
on an Axon GenePix 4000 A scanner (Axon Instruments)
at PMT gains 600, 700, 800, and 500 volts (in that order),
except for Array A, which was scanned at 700, 800, 500
and 600 volts, and Array H, which was scanned at 600,
400, 500 and 700 volts. Thus, the images obtained by the
Axon scanner were bleached more than the preceding
ones obtained by the Agilent scanner. For both scanners
the power of the 532 nm and the 635 nm lasers was set to
100% and the scan resolution to 10 µm/pixel. Moreover,
a one-pass (both channels scanned simultaneously) and
one-sample-per-pixel ("lines to average" equals one) pro-
cedure was used. The Agilent scanner has a special loading
mechanism for microarrays, which allows automatic scan-
ning of subsequent arrays without human intervention.
However, due to limitations in the software or the scan-
ner, each batch of arrays can only be scanned at a single
PMT gain. To scan at more PMT gains with the Agilent
scanner, it was therefore necessary to eject and reload the
arrays between different settings, which means that the
alignment between the scanned images may not be per-
fect. Contrary, for the Axon scanner the arrays were put in
the scanner one by one, then scanned at all PMT settings
without being moved.

Image analysis – spot segmentation and registration
To quantify the foreground and the background signals,
the scanned images (65536 gray scales and approximately
2000-by-5600 pixels) were analyzed using both the Axon
GenePix Pro v4.1.1 software (Axon Instruments) and the
Spot v2 software [8,24]. We first analyzed each image with
GenePix. For each of them, the grid and spot positions
were manually set and then the alignment was optimized
by GenePix. These positions were then re-entered and re-
optimized by Spot with visual inspection to verify the cor-
rectness. Moreover, for each individual scan the image

analysis software was let to find the optimal spot segmen-
tation. Thus, what is defined as a foreground pixel may
vary with PMT setting although the images are from the
same array. We decided on this schema for various rea-
sons. The first reason was that the Agilent arrays are
loaded and unloaded between subsequent scans and
therefore require a separate spot segmentation. To be able
to compare the results from the Axon and the Agilent
scanner we choose the same procedure for the images
scanned on the Axon scanner, even though, the optimized
segmentation for the strongest image could have been
reused. We further believe that this allows us compare
Spot and GenePix more fairly.

For both Spot and GenePix the median spot pixel inten-
sity was used as foreground signal. Background estimates
were not considered in this analysis. No spot signals were
discarded.

Calibration

Given estimates of  and  data can be calibrated
using backward transformation. Let

be the backward transformed observed signal and the
rescaled error terms, respectively. The affine Model (2) can
then be rewritten as

Moreover, let

be the average backward transformed signal for gene i in

channel c. Now, if , then

when all  and  are known. Thus, if (8) is applied

with estimates of  and  that are consistent as I →
∞, and the error terms have zero mean, the mean of the
backward transformed signals will converge to xc,i as I

grows. Even though  is not observable, we can esti-

mate it consistently by increasing the number of scans K.
Inspection of the residuals of calibrated signals (not
shown) indicates that the variance of the calibrated noise
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is independent of PMT setting, that is .

Assuming independent noise terms, the variance of the
sample mean decrease with K as

In summary, we obtain consistent estimates (up to a mul-
tiplicative constant) of all xc,i with increasing I and K.

Finally, signals that are saturated by the scanner have to be
excluded before calculating the average. If the quantified
signal for a spot happens to be saturated in all scans, then
that spot is marked as saturated, which still may be
informative when compared to other non-saturated
signals.

Data analysis
All further analysis was carried out using R [25,26] and the
aroma package (f.k.a. com.braju.sma) [21]. All methods
used can be found in the latter.
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