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ABSTRACT
Motivation: In cDNA microarray experiments all samples are labeled
with either Cy3 or Cy5. Systematic and gene-specific dye bias
effects have been observed in dual-color experiments. In contrast
to systematic effects which can be corrected by a normalization
method, the gene-specific dye bias is not completely suppressed
and may alter the conclusions about the differentially expressed
genes.
Methods: The gene-specific dye bias is taken into account using an
analysis of variance model. We propose an index, named label bias
index, to measure the gene-specific dye bias. It requires at least two
self–self hybridization cDNA microarrays.
Results: After lowess normalization we have found that the gene-
specific dye bias is the major source of experimental variability
between replicates. The ratio (R/G) may exceed 2. As a con-
sequence false positive genes may be found in direct comparison
without dye-swap. The stability of this artifact and its consequences
on gene variance and on direct or indirect comparisons are
addressed.
Availability: http://www.inapg.inra.fr/ens_rech/mathinfo/recherche/
mathematique
Contact: mlmartin@inapg.fr

INTRODUCTION
Many experimenters and statisticians (Kerr et al., 2002; Churchill,
2002) recommend using dye-swap design in cDNA microarray
experiments to correct gene-specific dye bias. This artifact is not
suppressed by normalization procedures such as the lowess (Yang
et al., 2002). For a reference design some experimenters claim that
dye-swaps are not necessary (Sterrenburg et al., 2002) whereas oth-
ers use dye-swap design to preclude gene-specific dye bias (Pritchard
et al., 2001; Brem et al., 2002). In direct comparison, even when the
labeling artifact is better recognized, its consequences are often min-
imized. For example Yue et al. (2001) wrote ‘Any variation observed
in differential expression was likely a result of real variations in
experimental mRNA levels rather than an artifact of the labeling
system.’ Tseng et al. (2001) described the gene*label interaction
but concluded ‘Theoretically some degree of gene-label interaction
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may exist. However this interaction appears to be insignificant in
magnitude compared to other sources of variation in the present
experiment.’

To our knowledge, few papers have investigated the influence of
the gene-specific dye bias: Dombkowski et al. (2004) have shown
that dye orientation can significantly influence results on differen-
tial analysis in a reference design. They have estimated that over
20% of the conclusions of their differential analysis may be inac-
curate using an approach with single dye orientation. They did not
identify the cause of the bias, but have urged the experimenters to
use dye-swap until this artifact is better characterized. Rosenzweig
et al. (2004) have investigated the nature of the gene-specific dye
bias on a direct comparison experiment. Their analysis suggests
that this artifact may concern the same probes. They proposed in
their paper a new and less expensive design than the dye-swap,
which attenuates the gene-specific dye bias but does not completely
correct it.

In this paper, we propose an index to evaluate the magnitude of the
gene-specific dye bias. The idea of the index comes from an analysis
of two self–self hybridization slides. When we analyzed them, we
were surprised to obtain many differentially expressed genes. The
reason is that the mean log-ratio log2(R1R2/G1G2) was wrongly
calculated in place of log2(R1G2/G1R2), where Ri and Gi denote
respectively the red and green intensity on the array i. With the mean
log-ratio log2(R1G2/G1R2), no differentially expressed genes were
obtained, as was expected. We have been amazed by the importance
of the effect of a simple reverse of dye. To better understand the
phenomenon we have written the corresponding statistical model,
and deduced an index to estimate the magnitude of the gene-specific
dye bias.

The paper is organized as follows. In the next section we present
the statistical model taking gene-specific dye bias into account, and
an index [label bias index (LBI)] to evaluate the magnitude of this
artifact. Next the LBI is computed on experiments concerning several
array types and organisms. We note that it is almost constant for
each array type but varies from one to another. One array type seems
to have low gene-specific dye bias. We are not able to explain the
reasons, but this fact shows that it is possible to control this artifact.
Finally we discuss the consequence of the gene-specific dye bias in
direct and indirect comparisons, and try to give some insight into the
mechanism of this bias.
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METHODS
This section is devoted to the statistical model. We underline the importance
of keeping the interaction between gene and dye in the model to take gene-
specific dye bias into account in the differential analysis, and we evaluate the
gene-specific dye bias.

Model allowing for gene-specific dye bias
A dye-swap experiment consists of two replicate microarrays where opposite
dye orientations are used. Thus each RNA sample is labeled with each dye.
We consider an experiment where p dye-swaps are made. To study the data,
we use the analysis of variance. Our notations follow those of Kerr et al.
(2002). Let Yijkg be the logarithm base 2 of the measurement for array i,
dye j , RNA sample k and gene g. We consider the following model:

Yijkg = µ + Ai + Dj + Vk + Gg + (V G)kg + (DG)jg + Eijkg , (1)

where Ai is the i-th array effect, Dj is the j -th dye effect, Vk is the k-th
RNA sample effect, Gg is the g-th gene effect, and (DG)jg and (V G)kg are
the corresponding interaction terms. The terms Eijkg represent independent
random errors with mean 0. If the RNA sample k = 1 is labeled with the
dye j = 1 in the first array i = 1, then the observed difference of expression
between the two RNA samples on the array i equals

Zig = V1 − V2 + (−1)i (D1 − D2) + (V G)1g − (V G)2g

+ (−1)i{(DG)1g − (DG)2g} + Ẽig ,

where the errors Ẽig are independent random variates with mean 0.
To remove systematic biases, we perform an array-by-array normalization

using the lowess procedure (Yang et al., 2002). It suppresses the first four
constant terms, and is supposed to alleviate the DG terms and not to alter
the V G terms. We refer to the work of Kerr et al. (2002) for an explanation.
After the normalization step, the observed difference of expression between
the two RNA samples on the array i equals

Z′
ig = (V G)1g − (V G)2g + (−1)i{(DG)′1g − (DG)′}2g + Fig ,

where the errors Fig are random variates with mean 0. The normalization step
implies that

∑G
g=1 Z′

ig = 0; therefore the errors Fig are not independent by

construction, and they verify that
∑G

g=1 Fig = 0. It implies a weak structural
dependence of order 1/G between the Fig . In the following we assume that
the Fig are independent. The departure from this assumption is too weak
to have any practical importance provided that G ≥ 1000. The difference
(V G)1g − (V G)2g is the true difference of expression between the two RNA
samples. It is the difference of interest for identifying differential expressed
genes. When it is non-null, it states that the gene is not transcribed in the
same manner in the two RNA samples. The difference (DG)′1g − (DG)′2g

represents what is called the gene-specific dye bias. When it is non-null, it
states that the probe corresponding to the gene g incorporates one of the dyes
preferentially. To simplify the notations, we denote the difference (V G)1g −
(V G)2g by δg and the difference (DG)′1g − (DG)′2g by βg . The observed
difference of the gene g between the two RNA samples in the array i is now
re-written:

Z′
ig = δg + (−1)iβg + Fig , (2)

where δg is the gene g differential expression and βg the specific dye bias of
the gene g. From this model we can estimate for each gene the differential
expression between the two RNA samples and the gene-specific dye bias by

δ̂g = 1

2p

2p∑
i=1

Z′
ig

and

β̂g = 1

2p

2p∑
i=1

(−1)iZ′
ig .

When at least two dye-swaps are available (p ≥ 2), we can also estimate the
variance of Fig , say σ 2

g , by the empirical estimator defined by

σ̂ 2
g = 1

2p − 2

2p∑
i=1

(Z′
ig − δ̂g − (−1)i β̂g)2.

It is then possible to perform a differential analysis and also an analysis of
the gene-specific dye bias. For the latter purpose, it suffices to test the null
hypothesis {β1 = · · · = βG = 0} against the alternative hypothesis {At least
one gene is such that βg �= 0}. The associated test statistic can be viewed as
a global index to evaluate the gene-specific dye bias. It is easily and quickly
computed. We name it the LBI and it is defined by

LBI =
∑G

g=1 β̂2
g∑G

g=1 σ̂ 2
g

. (3)

Under the null hypothesis and assuming that
∑2

g , the LBI is distributed
as a Fisher distribution with [G − 1, (2p − 2)(G − 1)] degrees of free-
dom. The null hypothesis is rejected as soon as the test statistic is greater
than FG−1,(2p−2)(G−1)(1 − α), where Fa,b(α) denotes the α-quantile of a
Fisher distribution with (a, b) degrees of freedom. Note that in practice,
the null hypothesis may often be rejected since the power of the test is
high. So to decide if the gene-specific dye bias is important, the LBI can
be also compared with the expectation of a Fisher distribution, given by
1 + {1/[(p − 1)(G − 1) − 1]}.

Although it is possible to take into account the gene-specific dye bias,
in many studies the authors prefer to neglect it (e.g. Tseng et al., 2001;
Comander et al., 2004). This leads to setting βg = 0 for g = 1, . . . , G

in the model (2). The variance of Fig is thus estimated by

σ̃ 2
g = 1

2p − 1

2p∑
i=1

(Z′
ig − δ̂g)2.

Straightforward calculations show that σ̃ 2
g is a biased estimator of σ 2

g if βg

differs from 0. To be precise, the bias equals 2pβ2
g/(2p − 1). Therefore

assuming wrongly that the βg are null leads to overestimating the variance
σ 2

g . Hence the power of the test for detecting a difference of expression will
be lower when σ̃ 2

g is used in place of σ̂ 2
g : some differentially expressed genes

will not be detected.
When only one dye swap is made, the model (2) is over-parametrized: the

number of parameters is larger than the number of observations. It is thus
impossible to estimate simultaneously the difference of expression (δg), the
gene-specific dye bias (βg) and the variance (σ 2

g ). Only two parameters per
gene can be estimated. Since the major interest is the differential analysis,
the parameter βg is usually supposed to be null. In the following section, we
propose a method to assess this assumption.

Evaluation of the gene-specific dye bias from self–self
hybridization slides
As noticed above, when only one dye-swap is available, the statistical model
(2) is no longer usable to study the observed difference of expression between
two different RNA samples. Nevertheless if we consider self–self hybrid-
ization slides where the same RNA sample is hybridized against itself, it
guarantees that the true difference of expression is null (δg = 0) and thus the
model (2) becomes a one-way ANOVA model:

Z′
ig = (−1)iβg + Fig .

It is thus possible to estimate the magnitude of the gene-specific dye bias.
For that purpose we calculate the LBI, defined as previously by the statistic
of Fisher to test the null hypothesis {β1 = · · · = βG = 0}. If p �= 1, it is
defined by:

LBI =
∑G

g=1 β̂g
2

∑G
g=1 σ̂g

2
, (4)

with δ̂g = 0, for all g = 1, . . . , G. Under the null hypothesis, the LBI is
distributed as a Fisher distribution with [G − 1, (2p − 1)(G − 1)] degrees of
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Table 1. LB1 and gene-specific dye bias from 11 self–self hybridization arrays

Organism/array Dataset RegSS RSS LBI (a) (b) Mean LR Min. LR Max. LR

Human/array 1 Wt t1 0.158 0.034 4.64 0 120 0.87 −1.19 1.58
Human/array 1 Control t2 0.156 0.027 5.68 0 153 0.45 −1.46 1.52
Human/array 1 SDF t3 0.221 0.054 4.07 0 2 1.97 1.73 2.21
Human/array 1 Wt t4 0.227 0.047 4.86 0 113 1.19 −1.16 1.81
Human/array 1 Control t5 0.280 0.060 4.64 0 33 0.19 −1.61 1.36
Human/array 1 SDF t6 0.278 0.043 6.42 0 189 1.42 −1.26 2.95
Human/array 2 SDF t2 0.120 0.012 10.29 0 8 −1.11 −1.35 −0.98
Human/array 1 SDF t2 0.080 0.016 5.15 0 3 −2.05 −2.85 −1.45
At/CATMA leaf 0.028 0.016 1.79 0 0 — — —
At/CATMA bud 0.041 0.035 1.17 0 0 — — —
At/CATMA bud 0.043 0.035 1.24 0 0 — — —

Wt, wild type; t, time; RegSS, regression sum of squares; RSS, residuals sum of squares; LBI, label bias index; At, A.thaliana; (a), number of genes differentially expressed; (b),
number of genes having a significant dye bias; LR, log ratio for genes having a significant dye bias.

freedom. Consequently the null hypothesis is rejected as soon as the LBI is
greater than FG−1,(2p−1)(G−1)(1 − α). It readily follows that for p = 1,

LBI =
∑G

g=1(Z
′
1g − Z′

2g)2

∑G
g=1(Z

′
1g + Z′

2g)2
. (5)

Under the null hypothesis, its distribution is a Fisher with (G − 1, G − 1)

degrees of freedom. The null hypothesis is thus rejected as soon as the LBI
is greater than FG−1,G−1(1 − α). As previously the null hypothesis is often
rejected since the number of degrees of freedom is of the magnitude of G.
Consequently to decide if the gene-specific dye bias is important, the LBI can
be compared with the expectation of the Fisher distribution, which is equal
to (G − 1)/(G − 3) ∼ 1.

The LBI gives a global overview of the gene-specific dye bias. It is also
interesting to have a gene-by-gene approach. For that purpose we propose to
test {βg = 0} for each gene. As in the differential analysis, it is important
to model the variance suitably. We have chosen to use the mixture model
of Delmar et al. (2004). This method identifies clusters of genes with equal
variance and has the good properties of keeping a good control of false positive
genes and having a good power of detection. We use the Bonferroni method
(with a type I error equal to 5%) in order to keep a strong control of the
false positives in a multiple comparison context (Benjamini and Hochberg,
1995).

RESULTS

Data
We calculate the LBI from several self–self hybridization arrays of
human and Arabidopsis thaliana cells.

Experiments from human cells
Resting CD4+ T cells isolated from peripheral mononuclear blood
cells of healthy donors were stimulated either by the SDF-1a
chemokine (SDF), or infected by the NL4-3 wild-type strain of
HIV-1 (WT) or left untreated (control). For each treatment, an ali-
quot was removed from the cell culture at 6 different time-points
over a 24 h period (30 min, 2, 4, 8, 12 and 24 h) and RNA
was extracted using the RNeasy mini kit (Qiagen) according to the
manufacturer’s recommendations. Samples of mRNA were submit-
ted to the T7 amplification procedure described by Phillips and
Eberwine (1996), in a very similar way as previously reported

(Wang et al., 2000). An aliquot of 4 µg of amplified RNA from
a given condition (SDF, wild type or control) at a chosen time
(Table 1), was used for reverse transcription and aminoallylcoupling
(for details see http://cmgm.stanford.edu/pbrown/protocols/amino-
allyl.htm and http://www.microarrays.org/pdfs/amino-allyl-protocol.
pdf). The two halves of each aminoallyl-cDNA were coupled to
NHS-Cy3 and NHS-Cy5, then purified together and hybridized onto
the same array to produce a self–self hybridization.

For the first six experiments of Table 1, duplicate experiments
using cells from two independent donors (RNA from same time and
condition) were performed on the same day. For the next two exper-
iments, the procedures remained the same except that the amount of
starting material was doubled in order to hybridize a couple of arrays
(same sample duplication).

All samples were hybridized on the same type of array consist-
ing of 11 520 clones except for the seventh dye-swap, which was
hybridized on another array of 11 616 clones spotted in duplicate.
These experiments are part of a larger study that will be published
elsewhere.

The arrays were scanned on a GenePix 4000A scanner (Axon
Instruments, Foster City, USA) and images were analyzed by the
GenePix Pro 4.0 software (Axon Instruments, Foster City, USA). For
each array, the raw data comprised the logarithm base 2 of median
feature pixel intensity at wavelength 635 nm (red) and 532 nm
(green). No background was subtracted. The array-by-array nor-
malization was performed to remove systematic biases. First, we
excluded spots that were considered badly formed features. Then
we performed a global intensity-dependent normalization using the
lowess procedure (Yang et al., 2002). Finally, for each block, the
log-ratio median calculated over the values for the entire block was
subtracted from each individual log-ratio value.

Experiments from A.thaliana cells
Four sets of 100 A.thaliana Col-0 plants were grown on horticultural
potting soil (Tref substrate with NFU 44-571 fertilizer, BAAN SA,
Vulaines, France) under cool white light at 100 µmol m-2 s-1 with a
16-h photoperiod at 22◦C and 50% humidity. Pooled samples of the
flowers or the buds were harvested. The RNA extraction and target
labeling were described as in Lurin et al. (2004).
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Fig. 1. Plots of the log-ratios log2(R/G): first slide in x-axis and second slide in y-axis. (a) human/array 1, (b) human/array 2, (c) At/CATMA.

All samples were hybridized on CATMA array containing 24 576
Gene Specific Tags from A.thaliana (Crowe et al., 2003).

The arrays were scanned on a GenePix 4000A scanner (Axon
Instruments, Foster City, USA) and images were analyzed by
GenePix Pro 3.0 (Axon Instruments, Foster City, USA). For each
array, the raw data and array-by-array normalization were respect-
ively defined and performed as for the slides of the human cell
experiments.

LBI
Table 1 summarizes the LBI computed for the 11 experiments. The
LBI is the ratio between the Regression sum of squares (RegSS =∑G

g=1 β̂2
g ) and the Residuals sum of squares (RSS = ∑G

g=1 σ̂ 2
g ).

The RegSS, RSS and LBI values are respectively presented in the
first, second and third columns of Table 1. We note that the RegSS
is always > RSS, so the LBI is always >1. The LBI shows that the
RegSS is more than three times as high as the RSS in arrays 1 and
2 and less than twice as high as the RegSS in the CATMA array. So
the dye bias is more important in the human experiments than in the
experiments of A.thaliana. We recall that the ideal LBI (no gene-
specific dye bias) is close to 1. In the experiments from A.thaliana
cells, we have at our disposal four slides of CATMA, where the same
sample of buds has been hybridized against itself. We use these four
slides to evaluate the robustness of the LBI by calculating it on the six
possible pairs of slides. The associated LBI varies between 1.12 and
1.26, which proves its robustness. We point out that the robustness

has not been evaluated for arrays with a relatively high LBI because
necessary data were not available.

To further illustrate the impact of the gene-specific dye bias, we
plot the log-ratios log2(R/G) for the two slides of the same dye-
swap, for all the experiments (Fig. 1). As we have two replicates
of self–self hybridization slides, nothing is expected to be seen.
However one can see that there is a positive correlation between
the two replicates. The only possible cause for such a correla-
tion is the dye bias. Some genes have a higher intensity when
labeled with one dye than with the other. Therefore the log-ratio
log2(R/G) is repeatedly higher (or lower) than it should be. This
dye effect is higher on human experiments (correlation between
0.61 and 0.73) than on A.thaliana (correlation between 0.08 and
0.33). This confirms that the dye bias plays an important role in
the experimental variability in the human experiments. In con-
trast, the dye bias seems to be better controlled in the A.thaliana
experiments.

We also calculate the correlations between all the β̂g for
each human/array 1 experiment. These correlations are comprised
between 0.45 and 0.81 (Table 2). As the array type is the same but
experimental conditions vary, these correlations suggest that the dye
bias may be attributed to the gene. Note that the possible gene effect
is confounded with its position on the slide. Therefore it is impossible
to separate the two possible causes of the labeling bias which are the
nucleic composition of the probe and the spotting effect (Mary-Huard
et al., 2004).
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Table 2. Correlation between the dye bias for all the human/array 1
experiments

Experiment 1 Experiment 2 Correlation

Wild type time 1 Control time 2 0.807
Wild type time 1 SDF time 3 0.762
Wild type time 1 Wild type time 4 0.745
Wild type time 1 Control time 5 0.672
Wild type time 1 time 6 0.646
Control time 2 SDF time 3 0.718
Control time 2 Wild type time 4 0.724
Control time 2 Control time 5 0.673
Control time 2 SDF time 6 0.588
SDF time 3 Wild type time 4 0.776
SDF time 3 Control time 5 0.707
SDF time 3 SDF time 6 0.657
Wild type time 4 Control time 5 0.763
Wild type time 4 SDF time 6 0.655
Control time 5 SDF time 6 0.533

Identification of genes having a specific dye bias
After a global analysis of the gene-specific dye bias we identify the
genes which are concerned. However to begin with, we assess the
quality of the self–self hybridization slides by testing that each δg is
null. Similar to the test of {βg = 0} for each gene, we use the mixture
model of Delmar et al. (2004). The control of the false positives is
done with the Bonferroni method at a level of 5%.

No gene is found to be regulated (column (a) in Table 1). Then, in
order to identify genes with a significant dye bias, we test the labeling
artifact using also the mixture model of Delmar et al. (see Methods
section). Column (b) of Table 1 shows that between 0 and 189 genes
have a significant gene-specific dye bias. This artifact is important in
the human experiments and does not appear in the A.thaliana exper-
iments. These results are in agreement with the LBI calculated in the
previous section. Furthermore, all the genes having a significant dye
bias are classified in the highest variance group from the differential
analysis. This suggests that many genes from the highest variance
group could not be detected as differentially expressed only because
their ‘pure’ experimental variability is increased by a specific dye
bias effect. This confirms that the presence of gene-specific dye bias
can increase the false negative rate and so decrease the power of
detection.

Table 1 contains the mean, minimal and maximal values of the
β̂g for the detected genes. One can see that the gene-specific dye
bias may multiply or divide the ratio by a factor >2 which is size-
able. An analysis on the intensity level of the genes with a high
specific dye bias (data not shown) shows that the intensity of these
genes is in a large range between 5.5 and 15.7, with a median value
between 9.5 and 10.2. Figure 2 plots the specific dye bias according
to the intensity level for the first human/array 1 experiment. We can
see that the magnitude of the artifact is near 0 when the intensity
level is not very far from the background level. This confirms that a
gene needs to be transcribed in order to reveal its specific dye bias.
For higher values of the intensity level, no dependence is observed
between specific dye bias and intensity level. As shown before, all
expressed genes can be affected by a specific dye bias whatever their
intensity level.

Fig. 2. Plot of the dye bias according to the intensity level in human/array 1.

DISCUSSION

Consequences of the gene-specific dye bias on direct
comparison experiments
In direct comparison, two RNA samples are simultaneously hybrid-
ized on the same slide. Each sample is labeled with a dye, and
it is well known that the two dyes do not have the same incor-
poration effectiveness. Moreover it appears that some genes are
systematically badly labeled by Cy5 or Cy3 (the gene-specific dye
bias). For all these reasons dye-swap design is absolutely recom-
mended, although it is costly. Moreover in the first section we
have proved that the gene*label interaction increases the experi-
mental variability even in dye-swap experiments and thus decreases
the power of the tests for detecting the differentially expressed
genes.

In this paper we have proposed the LBI which is a global index
to evaluate the magnitude of the gene-specific dye bias. The LBI
is easily and quickly computed, and requires at least two self–self
hybridization slides. After the LBI calculation we advise carry-
ing out a gene-by-gene analysis. Even if we cannot completely
describe the biochemical mechanisms of this bias, it seems that
it is an artifact which involves the probes and the labeled tar-
gets, since the gene-specific dye bias can be seen only when
the gene corresponding to the probe is transcribed. Consequently
we advocate using a sample which hybridizes against the most
possible probes. Moreover if the LBI is calculated on an array
where the probes are duplicated, we think that it is better to work
from the probes and not from the mean of the duplicated probes, since
the gene-specific dye bias is probe-dependent. All these remarks
allow us to think that the method proposed by Rosenzweig et al.
(2004) is questionable. A condition where all genes would be tran-
scribed simultaneously would be necessary to obtain an effective
correction.

In order to investigate the gene-specific dye bias in more detail,
it could be interesting for the platforms to include the LBI in their
quality-control procedures, because the identification of genes which
have specific dye bias is important supplementary information for the
differential analysis. Moreover it could help to explain the nature of
the phenomenon. According to the result of the A.thaliana experi-
ment, this artifact is not an inevitability and can be well controlled.
The elimination of the gene-specific dye bias could dramatically
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decrease the experiment cost by removing the necessity of systematic
dye-swap design.

Note that the genes can be clustered either in a group without
specific dye bias (βg = 0) or in a group with specific dye bias
(βg �= 0). The former group has a lower experimental variability than
the latter in dye-swap experiments. This explains why the mixture
model on gene variances is well suited to microarray experiments
(Delmar et al., 2004).

Consequences of the gene-specific dye bias on indirect
comparison experiments
In indirect comparison an RNA sample is hybridized against a con-
trol sample. The associated design is called the reference design. As
we mentioned in the introduction, it is widely assumed that refer-
ence design does not require dye-swaps. The paper of Dombkowski
et al. (2004) demonstrated from a microarray data analysis that this
assumption is not reliable. By writing the statistical model, we con-
firm their findings. We take the notations used throughout the paper.
To take into account that the gene-specific dye bias appears only
when there is transcription, we include in the model (1) the interac-
tion between the RNA sample, the dye and the gene, say (V DG). Let
us assume that the dye j = 1 is associated with the control sample
k = 0, then the observed difference of expression between the i-th
RNA sample and the control sample is equal to

Zig = Yi21g − Yi10g

= D2 − D1 + Vi −V0+(V G)ig−(V G)0g + (DG)2g−(DG)1g

+ (V DG)i2g − (V DG)01g + Ẽig .

After the normalization step the observed difference of expression
between the RNA sample and the control sample equals:

Z′
ig = (V G)ig − (V G)0g + (DG)′2g − (DG)′1g

+ (V DG)′i2g − (V DG)′01g + Fig .

Finally, the estimate for the differential expression of gene g between
the two RNA samples is thus

Z′
1g − Z′

2g = δg + (V DG)′12g − (V DG)′22g + F̃g ,

where the errors F̃g are random variates with mean 0. The gene*label
interaction terms vanish but the interactions between the RNA
sample, the dye and the gene remain. This is the reason why a
dye-swap design is recommended even in indirect comparison.
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In their paper in Bioinformatics, Martin-Magniette et al. (2005)
recommend complete dye-swap1 designs for both direct and indirect
dual label microarray experiments. These recommendations contra-
dict our previous recommendations (Dobbin et al., 2003) for design-
ing experiments, where we suggested minimizing or eliminating the
use of dye-swap arrays. We show here that the recommendations of
Martin-Magniette et al. are fundamentally flawed, and that in most
realistic situations performing extensive dye-swap arrays results in
a poor experimental design.

The key error made by these authors is that they focus on over-
simplified situations in which only two RNA samples are being
compared. There are two problems with this approach. First, if the
goal is really just to compare gene expression in two RNA samples,
then obviously the best design will be to place aliquots from both
samples together on each array and label each sample with each
dye half the time. So there really is no design question. The second
and more serious problem with this approach, however, is that com-
paring gene expression in two RNA samples is almost never the
goal of a microarray experiment. The goal is almost always to draw
conclusions that are applicable beyond the particular RNA samples
being studied, and this requires independent replication (Simon et al.,
2002). Without independent experimental replication, either inde-
pendent biological samples or independent replications of the entire
experiment, depending on the context, one cannot make statistical
inferences that apply beyond the RNA samples used. For example,
in an experiment to evaluate the effect of different conditions on cell
line gene expression, one must perform independent replicates of the
experiment, in which multiple, different cell line cultures are grown
up under each condition. Similarly, one cannot draw valid conclu-
sions about differential expression in two populations of mice from
an experiment that involves just two mice. One needs multiple inde-
pendent mice from each population to capture the biological variation
in the populations.

When multiple independent replicates from different condi-
tions or populations are used in an experiment, then the equa-
tion Martin-Magniette et al. have derived, based on the model of

∗To whom correspondence should be addressed.
1An individual array is dye-swapped when, for each of the original batches
of RNA which were tagged with Cy3 and Cy5, RNA is drawn from the same
two batches and labeled in the opposite way as on the original microarray,
and the two labeled samples are hybridized to a second array. When every
array in an experiment is dye-swapped, this is called a complete dye-swap
design.

Kerr et al. (2002), is no longer valid. The specific model equation2

for the log-ratios is Z′
ig = (VG)1g − (VG)2g + (DG)′1g − (DG)′2g +

Fig, where Zig is the normalized log-ratio for gene g on array i,
(VG)1g − (VG)2g is the ‘variety’ effect, (DG)′1g − (DG)′2g is gene-
specific dye bias and Fig is the error term. The reason the model
is not valid is that it contains a single term, ‘variety,’ which rep-
resents both a sample and a condition or population. But samples
are different from conditions or populations, so terms need to be
added to the model to distinguish between the two, as indicated
in Dobbin and Simon (2002). When such terms are added to the
model, so that samples are conceptually separated from conditions
or populations, the impact of taking multiple subsamples from the
same batch of RNA (technical replication) becomes different from
the impact of performing biologically independent replicates of the
experiment. Without introducing additional terms into the model,
technical replication is indistinguishable from biologically independ-
ent replication. If we let ‘variety’ represent condition or population,
then a term for sample effects needs to be added to the model. Let
S(v) indicate a sample from condition or population V . Then the
model of Martin-Magniette et al. (2003) needs to be changed to:

Z′
igs(1)s(2) = (VG)1g − (VG)2g + (DG)′1g − (DG)′2g

+ (SG)s(1)g − (SG)s(2)g + Figs(1)s(2). (1)

The goal of the experiment is still to make inferences about the
(VG)1g − (VG)2g term which represents differential expression
between the classes of samples. But the model change is critical,
because it distinguishes between different levels of replication,
and results in different conclusions about the optimal experimental
design. Also, conclusions about differential expression from such a
model apply beyond the individual RNA samples used in the experi-
ment, whereas conclusions based on Kerr et al. (2002) model do not
(they apply only to the RNA samples used). Experiments with inde-
pendent replicates from different classes (populations or conditions)
are commonly called class comparison experiments (Simon et al.,
2002).

Martin-Magniette et al. (2005) recommend dye swapping every
array in a reference3 design. For class comparison experiments,
there are situations in which a reference design may be reasonable,

2Here we follow the notation of Martin-Magniette et al. (2005). A simpler
and reformulation of the model is presented in the supplemental material.
3A dual-label reference design experiment is an experiment that includes the
same reference sample on each array, tagged with the same dye.
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although we have shown that balanced block designs,4 which do not
use a reference, are more efficient (Dobbin and Simon, 2002). The
motivation Martin-Magniette et al. present for recommending that
reference designs always dye-swap every array is the existence of a
three-way sample-by-dye-by-gene interaction, which they hypothes-
ize exists based on a previous study by Dombkowski et al. (2004).
In the over-simplified model Martin-Magniette et al. use, with just
two samples and no distinction between samples on the one hand and
conditions or populations on the other, the three-way interaction term
introduces bias into comparisons in a reference design. The reason
this bias is introduced is because the three-way interaction term
can be viewed as sample-specific dye bias, and because the model
fails to distinguish between samples and conditions/populations,
bias related to the sample automatically becomes bias related to the
condition/population. But for class comparison experiments, which
allow for statistical inference beyond the particular samples stud-
ied, and which require a more sophisticated model like the one in
Equation (1), dye-swap arrays are not required to remove the bias.
Indeed, as we will show, a complete dye-swap reference design is
clearly inferior to a reference design in this situation.

For a fixed number of arrays, a complete dye-swap reference
design involves half as many independent samples as a reference
design. So, dye-swapping every array in a reference design halves
the effective sample size. Is such a radical reduction in sample size
justified by the existence of the three-way interaction term? The
answer is no. To see this, add the three-way interaction terms,
(DGS)dgs to the model of Equation (1), and let condition V = 0
represent the reference sample on each array,

Z′
igs(v)s(0) = (VG)vg − (VG)0g + (DG)′1g − (DG)′2g

+ (SG)s(v)g − (SG)s(0)g + (DGS)dgs(v)

− (DGS)dgs(0) + Figs(v)s(0). (2)

Then, if we assume a reference design, the estimate of the difference
in gene expression between classes 1 and 2 is: Z•g•(1)0 − Z•g•(2)0,
where Z•g•(v)0 indicates the average of the log-ratios over the arrays
with samples from class v (sample 0 indicating the reference sample
on each array). The expected value of this difference is E�Z•g•(1)0 −
Z•g•(2)0� = (VG)1g − (VG)2g + (DGS)dg•(1) − (DGS)dg•(2), where
(DGS)dg•(v) is the average of the interaction effects over samples
from condition or population V . (Note that the individual SG sample
effects will cancel out of the expected value, so we have omit-
ted them.) If a random effects model is used for the three-way
interaction, then (DGS)dgs ∼ N(µ, σ 2), E�Z•g•(1)0 − Z•g•(2)0� =
(VG)1g −(VG)2g , and the reference design yields unbiased estimates
of the class difference. Alternatively, if fixed effects are used for the
interaction term, then under the usual model constraints, required for
model identifiability,

∑
s∈V (DGS)dgs − (DGS)dg0 = 0 for V = 1, 2,

yielding E�Z•g•(1)0 − Z•g•(2)0� = (VG)1g − (VG)2g , and the ref-
erence design estimates are unbiased. So, under both a fixed-effects
and a random-effects model for the interaction term, the reference
design yields unbiased estimates of the class distinction—without

4A balanced block design for two classes pairs a samples from one class
with a sample from the other class on each array, balancing the labels used
for each class but using each biologically independent sample only once.
Balanced block designs generalize to multiple classes, and have a long history
in statistical literature (see, for example, Cochran and Cox, 1992).

any dye-swaps. Moreover, the reference design will be more effi-
cient than the complete dye-swap reference design. Intuitively, the
reason for the improved efficiency of the reference design is that it
allows twice as many samples to be used in the same number of
arrays. A more detailed proof of the efficiency advantage appears
in Dobbin et al. (2003). In conclusion, a reference design provides
unbiased and more efficient estimates of differential gene expression
than a complete dye-swap reference design for class comparison
experiments.

Now we turn to designs that do not involve a reference sample.
In this case also, Martin-Magniette et al. (2005) recommend a dye-
swap design, but it is unclear whether by this they mean a complete
dye-swap design, which dye swaps every array, or not. The motiva-
tion for recommending dye-swapping arrays in this case is somewhat
different from that in the reference design case. But it is still based
on the same flawed model. Their motivation is to remove the two-
way dye by gene interaction, which we have shown can be done
without dye-swapping arrays (Dobbin et al., 2003). When one prop-
erly distinguishes between samples and conditions/populations, as
in our Equation (1), one finds that dye-swapping is much less effi-
cient than independent replication of the experiment with the labeling
reversed (such as in a balanced block design). And, using arguments
analogous to the reference design situation above, even if sample-by-
gene-by-dye interaction terms are present, dye-swapping individual
arrays is not necessary to remove the bias from the class comparisons.
So, systematically dye-swapping individual arrays in a non-reference
design is inadvisable when the goal is class comparison.

Finally, while we have shown that neither the existence of interac-
tions between gene and dye, nor interactions between gene and dye
and sample, justify systematically dye-swapping individual arrays,
one might wonder if interactions between gene and dye and popu-
lation/condition would change the situation. These interaction terms
would appear as (DGV)dgv − (DGV)dg0 in Equation (2). Such an
interaction term has not to our knowledge been empirically evalu-
ated. But, for the sake of argument, suppose it did exist. In the case
of non-reference designs for class comparison, the bias would cancel
out of comparisons between the populations/conditions in a balanced
block design, so this design would remain optimal. No dye-swaps
would be required. Hence, even under this fairly unlikely scenario,
dye-swapping is not a good idea.

In conclusion, the findings of Martin-Magniette et al. (2005) must
be carefully interpreted within their very limited context, and in prac-
tice dye-swap arrays should be used sparingly if at all, particularly
in class comparison experiments.
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We would like to thank K. Dobbin, J. Shih and R. Simon for their
comments about Martin-Magniette et al. (2005). Their remarks relate
to the design of microarray experiments and notably about the use of
dye-swaps. We, however, want to make it clear that our manuscript
primarily focuses on the detection, quantification and correction
of the gene-specific dye-bias introduced in dual-color microarray
experiments.

The most important point in Martin-Magniette et al. (2005) is
the following: by dint of studying technical errors, we will be able
to identify and then to remove most of them. For the first time, in
Martin-Magniette et al. (2005), we were able to quantify the gene-
specific dye bias by calculating the Labelling Bias Index, (LBI). The
LBI measured on different array types shows that this artifact seems
to be very low in some cases and could be thus neglected. However,
it is high in other cases and it cannot thus be neglected for data
issued from these array types. This measure is of crucial importance
as it allows users to evaluate the impact of this bias on their data.
Moreover, we think that each platform should at least know in what
class it belongs for each array types. Although this artifact is not
lowered nor understood, it is simply dangerous to underestimate it.
The gene-specific dye bias is not an inevitability and can be well
controlled, as we point out in our paper.

Recently, in another paper, Dobbin et al. (2005) studied the gene-
specific dye bias. Although they reached the same conclusions, some
of their remarks are explained in Martin-Magniette et al. (2005):
e.g. Dobbin et al. (2005) have found that ‘(the gene-specific) dye
bias appears to have masked the true differential expression’. This is
explained in Martin-Magniette et al. (2005): the variance associated
to a gene is overestimated by the dye bias effect in model (2) of
Martin-Magniette et al.

Dye-swaps constitute a simple and effective design to remove
gene-specific dye bias when it is high. Nevertheless, we agree with

Dobbin et al. (2005), that a balanced block design may be better than
dye-swaps in some situations. As the former designs allow the use of
more biological samples, the estimation of the biological variability
will be more precise. Even if balanced block designs are statistic-
ally more efficient, the following considerations should be taken into
account before choosing the experimental design:

• Even with rigorous experimental procedures some sources of
variability remain (quality and yield of target purification,
labelling efficiency, . . .). Performing dye-swaps will allow to
differentiate biological from technical variability.

• It is often difficult to balance the dye for every treatment in com-
plex designs, when samples are hardly available. For instance,
such situations are encountered in sex-balanced medical
studies.

• Moreover, some redundant experimental procedures (quality
control of mRNA, preparation of targets for indirect dye-
labelling) used in dye-swap experiments, decrease the financial
cost to <2-fold the cost of a single slide hybridization, thus
rendering this design much more attractive.

The experimental design must be adapted not only to the research
question but also to the amount of biological material available.
Finally, class prediction or differential expression, e.g. the ques-
tion of interest, do not necessarily imply the same experimental
design.
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